These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 24252245)

  • 41. Current-induced magnetic resonance phase imaging.
    Bodurka J; Jesmanowicz A; Hyde JS; Xu H; Estkowski L; Li SJ
    J Magn Reson; 1999 Mar; 137(1):265-71. PubMed ID: 10053158
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Adaptive suppression of power line interference in ultra-low field magnetic resonance imaging in an unshielded environment.
    Huang X; Dong H; Qiu Y; Li B; Tao Q; Zhang Y; Krause HJ; Offenhäusser A; Xie X
    J Magn Reson; 2018 Jan; 286():52-59. PubMed ID: 29183004
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Suppressing multi-channel ultra-low-field MRI measurement noise using data consistency and image sparsity.
    Lin FH; Vesanen PT; Hsu YC; Nieminen JO; Zevenhoven KC; Dabek J; Parkkonen LT; Simola J; Ahonen AI; Ilmoniemi RJ
    PLoS One; 2013; 8(4):e61652. PubMed ID: 23626710
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Correction of concomitant gradient artifacts in experimental microtesla MRI.
    Myers WR; Mössle M; Clarke J
    J Magn Reson; 2005 Dec; 177(2):274-84. PubMed ID: 16169266
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Double tuning a single input probe for heteronuclear NMR spectroscopy at low field.
    Tadanki S; Colon RD; Moore J; Waddell KW
    J Magn Reson; 2012 Oct; 223():64-7. PubMed ID: 22975236
    [TBL] [Abstract][Full Text] [Related]  

  • 46. SQUID detected NMR and NQR. Superconducting Quantum Interference Device.
    Augustine MP; TonThat DM; Clarke J
    Solid State Nucl Magn Reson; 1998 Mar; 11(1-2):139-56. PubMed ID: 9650797
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ultra-low field NMR measurements of liquids and gases with short relaxation times.
    Volegov PL; Matlachov AN; Kraus RH
    J Magn Reson; 2006 Nov; 183(1):134-41. PubMed ID: 16945561
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modelling the magnetic signature of neuronal tissue.
    Blagoev KB; Mihaila B; Travis BJ; Alexandrov LB; Bishop AR; Ranken D; Posse S; Gasparovic C; Mayer A; Aine CJ; Ulbert I; Morita M; Müller W; Connor J; Halgren E
    Neuroimage; 2007 Aug; 37(1):137-48. PubMed ID: 17544300
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Highly accelerated acquisition and homogeneous image reconstruction with rotating RF coil array at 7T-A phantom based study.
    Li M; Zuo Z; Jin J; Xue R; Trakic A; Weber E; Liu F; Crozier S
    J Magn Reson; 2014 Mar; 240():102-12. PubMed ID: 24365100
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Toward direct mapping of neuronal activity: MRI detection of ultraweak, transient magnetic field changes.
    Bodurka J; Bandettini PA
    Magn Reson Med; 2002 Jun; 47(6):1052-8. PubMed ID: 12111950
    [TBL] [Abstract][Full Text] [Related]  

  • 51. MR imaging of oscillatory magnetic field changes: Progressing from phantom to human.
    Chai Y; Sheng J; Men W; Fan Y; Wu B; Gao JH
    Magn Reson Imaging; 2017 Feb; 36():167-174. PubMed ID: 27826081
    [TBL] [Abstract][Full Text] [Related]  

  • 52. MRI of the human brain at 130 microtesla.
    Inglis B; Buckenmaier K; Sangiorgio P; Pedersen AF; Nichols MA; Clarke J
    Proc Natl Acad Sci U S A; 2013 Nov; 110(48):19194-201. PubMed ID: 24255111
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Current-density imaging using ultra-low-field MRI with adiabatic pulses.
    Nieminen JO; Zevenhoven KC; Vesanen PT; Hsu YC; Ilmoniemi RJ
    Magn Reson Imaging; 2014 Jan; 32(1):54-9. PubMed ID: 24139338
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electromagnetohydrodynamic modeling of Lorentz effect imaging.
    Pourtaheri N; Truong TK; Henriquez CS
    J Magn Reson; 2013 Nov; 236():57-65. PubMed ID: 24056273
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Functional imaging of the brain. Magnetoencephalography (MEG)].
    Huk WJ; Vieth J
    Radiologe; 1993 Nov; 33(11):633-8. PubMed ID: 8278590
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Rotary scanning acquisition in ultra-low-field MRI.
    Hsu YC; Zevenhoven KC; Chu YH; Dabek J; Ilmoniemi RJ; Lin FH
    Magn Reson Med; 2016 Jun; 75(6):2255-64. PubMed ID: 26122196
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High-temperature superconducting quantum interference device with cooled LC resonant circuit for measuring alternating magnetic fields with improved signal-to-noise ratio.
    Qiu L; Zhang Y; Krause HJ; Braginski AI; Usoskin A
    Rev Sci Instrum; 2007 May; 78(5):054701. PubMed ID: 17552846
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A fast field-cycling MRI relaxometer for physical contrasts design and pre-clinical studies in small animals.
    Romero JA; Rodriguez GG; Anoardo E
    J Magn Reson; 2020 Feb; 311():106682. PubMed ID: 31923764
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Magnetoencephalographic accuracy profiles for the detection of auditory pathway sources.
    Bauer M; Trahms L; Sander T
    Biomed Tech (Berl); 2015 Apr; 60(2):135-45. PubMed ID: 25490026
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modeling direct effects of neural current on MRI.
    Heller L; Barrowes BE; George JS
    Hum Brain Mapp; 2009 Jan; 30(1):1-12. PubMed ID: 17990303
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.