These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 24253172)
1. Helicoidal orientation of cellulose microfibrils in Nitella opaca internode cells: ultrastructure and computed theoretical effects of strain reorientation during wall growth. Neville AC; Levy S Planta; 1984 Oct; 162(4):370-84. PubMed ID: 24253172 [TBL] [Abstract][Full Text] [Related]
2. Changes in the orientations of cellulose microfibrils during the development of collenchyma cell walls of celery (Apium graveolens L.). Chen D; Melton LD; McGillivray DJ; Ryan TM; Harris PJ Planta; 2019 Dec; 250(6):1819-1832. PubMed ID: 31463558 [TBL] [Abstract][Full Text] [Related]
3. Helicoidal pattern in secondary cell walls and possible role of xylans in their construction. Reis D; Vian B C R Biol; 2004; 327(9-10):785-90. PubMed ID: 15587069 [TBL] [Abstract][Full Text] [Related]
4. Multinet growth in the cell wall of Nitella. GREEN PB J Biophys Biochem Cytol; 1960 Apr; 7(2):289-96. PubMed ID: 13851527 [TBL] [Abstract][Full Text] [Related]
6. Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy. Zhang T; Zheng Y; Cosgrove DJ Plant J; 2016 Jan; 85(2):179-92. PubMed ID: 26676644 [TBL] [Abstract][Full Text] [Related]
7. Helicoidal cell-wall texture in root hairs. Emons AM; van Maaren N Planta; 1987 Feb; 170(2):145-51. PubMed ID: 24232872 [TBL] [Abstract][Full Text] [Related]
8. Cell wall synthesis during growth and maturation of Nitella internodal cells. Morrison JC; Greve LC; Richmond PA Planta; 1993 Mar; 189(3):321-8. PubMed ID: 24178488 [TBL] [Abstract][Full Text] [Related]
9. Anatomical structure and ultrastructure of the endocarp cell walls of Argania spinosa (L.) Skeels (Sapotaceae). Sebaa HS; Harche MK Micron; 2014 Dec; 67():100-106. PubMed ID: 25125280 [TBL] [Abstract][Full Text] [Related]
10. Liquid crystal-type assembly of native cellulose-glucuronoxylans extracted from plant cell wall. Reis D; Vian B; Chanzy H; Roland JC Biol Cell; 1991; 73(2-3):173-8. PubMed ID: 1804508 [TBL] [Abstract][Full Text] [Related]
11. The need for a constraining layer in the formation of monodomain helicoids in a wide range of biological structures. Neville AC Tissue Cell; 1988; 20(1):133-43. PubMed ID: 18620230 [TBL] [Abstract][Full Text] [Related]
12. Using structural colour to track length scale of cell-wall layers in developing Pollia japonica fruits. Middleton R; Moyroud E; Rudall PJ; Prychid CJ; Conejero M; Glover BJ; Vignolini S New Phytol; 2021 Jun; 230(6):2327-2336. PubMed ID: 33720398 [TBL] [Abstract][Full Text] [Related]
13. The Impact of Microfibril Orientations on the Biomechanics of Plant Cell Walls and Tissues. Ptashnyk M; Seguin B Bull Math Biol; 2016 Nov; 78(11):2135-2164. PubMed ID: 27761699 [TBL] [Abstract][Full Text] [Related]
17. The growing outer epidermal wall: design and physiological role of a composite structure. Kutschera U Ann Bot; 2008 Apr; 101(5):615-21. PubMed ID: 18258808 [TBL] [Abstract][Full Text] [Related]
18. Helicoidal architecture of fish eggshell. Grierson JP; Neville AC Tissue Cell; 1981; 13(4):819-30. PubMed ID: 7330859 [TBL] [Abstract][Full Text] [Related]
19. The making of the architecture of the plant cell wall: how cells exploit geometry. Emons AM; Mulder BM Proc Natl Acad Sci U S A; 1998 Jun; 95(12):7215-9. PubMed ID: 9618565 [TBL] [Abstract][Full Text] [Related]
20. On the robustness of the geometrical model for cell wall deposition. Diotallevi F; Mulder BM; Grasman J Bull Math Biol; 2010 May; 72(4):869-95. PubMed ID: 20041352 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]