These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 24253354)

  • 1. Catalytic aromatization of methane.
    Spivey JJ; Hutchings G
    Chem Soc Rev; 2014 Feb; 43(3):792-803. PubMed ID: 24253354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor.
    Morejudo SH; Zanón R; Escolástico S; Yuste-Tirados I; Malerød-Fjeld H; Vestre PK; Coors WG; Martínez A; Norby T; Serra JM; Kjølseth C
    Science; 2016 Aug; 353(6299):563-6. PubMed ID: 27493179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review of dry (CO2) reforming of methane over noble metal catalysts.
    Pakhare D; Spivey J
    Chem Soc Rev; 2014 Nov; 43(22):7813-37. PubMed ID: 24504089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic investigations of the process of encapsulation of small hydrocarbons into a cavitand-porphyrin.
    Nakazawa J; Sakae Y; Aida M; Naruta Y
    J Org Chem; 2007 Dec; 72(25):9448-55. PubMed ID: 17979283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy-efficient syngas production through catalytic oxy-methane reforming reactions.
    Choudhary TV; Choudhary VR
    Angew Chem Int Ed Engl; 2008; 47(10):1828-47. PubMed ID: 18188848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single Step Bi-reforming and Oxidative Bi-reforming of Methane (Natural Gas) with Steam and Carbon Dioxide to Metgas (CO-2H2) for Methanol Synthesis: Self-Sufficient Effective and Exclusive Oxygenation of Methane to Methanol with Oxygen.
    Olah GA; Goeppert A; Czaun M; Mathew T; May RB; Prakash GK
    J Am Chem Soc; 2015 Jul; 137(27):8720-9. PubMed ID: 26086090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ Raman and pulse reaction study on the partial oxidation of methane to synthesis gas over a Pt/Al2O3 catalyst.
    Wang ML; Zheng HZ; Li JM; Weng WZ; Xia WS; Huang CJ; Wan HL
    Chem Asian J; 2011 Feb; 6(2):580-9. PubMed ID: 21254432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.
    Laycock CJ; Staniforth JZ; Ormerod RM
    Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of hydrocarbon content of a reforming gas by using a hydrogenation catalyst.
    Inoue K; Kawamoto K
    Chemosphere; 2010 Jan; 78(5):599-603. PubMed ID: 20022077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-processing CH4 and oxygenates on Mo/H-ZSM-5: 2. CH4-CO2 and CH4-HCOOH mixtures.
    Bedard J; Hong DY; Bhan A
    Phys Chem Chem Phys; 2013 Aug; 15(29):12173-9. PubMed ID: 23703320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient utilization of greenhouse gas in a gas-to-liquids process combined with carbon dioxide reforming of methane.
    Ha KS; Bae JW; Woo KJ; Jun KW
    Environ Sci Technol; 2010 Feb; 44(4):1412-7. PubMed ID: 20078033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic combustion of volatile organic compounds.
    Everaert K; Baeyens J
    J Hazard Mater; 2004 Jun; 109(1-3):113-39. PubMed ID: 15177752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An introduction of CO₂ conversion by dry reforming with methane and new route of low-temperature methanol synthesis.
    Shi L; Yang G; Tao K; Yoneyama Y; Tan Y; Tsubaki N
    Acc Chem Res; 2013 Aug; 46(8):1838-47. PubMed ID: 23459583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-processing methane in high temperature steam gasification of biomass.
    Palumbo AW; Jorgensen EL; Sorli JC; Weimer AW
    Bioresour Technol; 2013 Jan; 128():553-9. PubMed ID: 23208181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Steam reforming of crude glycerol with in situ CO(2) sorption.
    Dou B; Rickett GL; Dupont V; Williams PT; Chen H; Ding Y; Ghadiri M
    Bioresour Technol; 2010 Apr; 101(7):2436-42. PubMed ID: 19945865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cobalt carbide nanoprisms for direct production of lower olefins from syngas.
    Zhong L; Yu F; An Y; Zhao Y; Sun Y; Li Z; Lin T; Lin Y; Qi X; Dai Y; Gu L; Hu J; Jin S; Shen Q; Wang H
    Nature; 2016 Oct; 538(7623):84-87. PubMed ID: 27708303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalyst screening for oxidative reforming of methane in direct route using high pressure HTS reactor with syngas detection system by colorimetric reaction and gas chromatograph.
    Omata K; Ishii H; Horiguchi J; Kobayashi S; Yamazaki Y; Yamada M
    J Comb Chem; 2009; 11(1):169-74. PubMed ID: 19133839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of different dielectric barrier discharge plasma configurations as an alternative technology for green C1 chemistry in the carbon dioxide reforming of methane and the direct decomposition of methanol.
    Rico VJ; Hueso JL; Cotrino J; González-Elipe AR
    J Phys Chem A; 2010 Mar; 114(11):4009-16. PubMed ID: 20184329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Steam reforming of biodiesel by-product to make renewable hydrogen.
    Slinn M; Kendall K; Mallon C; Andrews J
    Bioresour Technol; 2008 Sep; 99(13):5851-8. PubMed ID: 18032034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.