These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 24253445)

  • 61. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture.
    Heremans P; Cheyns D; Rand BP
    Acc Chem Res; 2009 Nov; 42(11):1740-7. PubMed ID: 19751055
    [TBL] [Abstract][Full Text] [Related]  

  • 62. All-polymer solar cells with 3.3% efficiency based on naphthalene diimide-selenophene copolymer acceptor.
    Earmme T; Hwang YJ; Murari NM; Subramaniyan S; Jenekhe SA
    J Am Chem Soc; 2013 Oct; 135(40):14960-3. PubMed ID: 24083488
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Organic donor materials based on Bis(arylene ethynylene)s for bulk heterojunction organic solar cells with high V(oc) values.
    Zhan H; Liu Q; Dai F; Ho CL; Fu Y; Li L; Zhao L; Li H; Xie Z; Wong WY
    Chem Asian J; 2015 Apr; 10(4):1017-24. PubMed ID: 25663490
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A fused-ring acceptor unit in d-a copolymers benefits photovoltaic performance.
    Zuo C; Cao J; Ding L
    Macromol Rapid Commun; 2014 Aug; 35(15):1362-6. PubMed ID: 24821210
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Chalcogenophene comonomer comparison in small band gap diketopyrrolopyrrole-based conjugated polymers for high-performing field-effect transistors and organic solar cells.
    Ashraf RS; Meager I; Nikolka M; Kirkus M; Planells M; Schroeder BC; Holliday S; Hurhangee M; Nielsen CB; Sirringhaus H; McCulloch I
    J Am Chem Soc; 2015 Jan; 137(3):1314-21. PubMed ID: 25547347
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Design of semiconducting indacenodithiophene polymers for high performance transistors and solar cells.
    McCulloch I; Ashraf RS; Biniek L; Bronstein H; Combe C; Donaghey JE; James DI; Nielsen CB; Schroeder BC; Zhang W
    Acc Chem Res; 2012 May; 45(5):714-22. PubMed ID: 22280366
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Efficient conventional- and inverted-type photovoltaic cells using a planar alternating polythiophene copolymer.
    Lee W; Choi H; Hwang S; Kim JY; Woo HY
    Chemistry; 2012 Feb; 18(9):2551-8. PubMed ID: 22278965
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Small-bandgap semiconducting polymers with high near-infrared photoresponse.
    Hendriks KH; Li W; Wienk MM; Janssen RA
    J Am Chem Soc; 2014 Aug; 136(34):12130-6. PubMed ID: 25101518
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Solar cell efficiency, self-assembly, and dipole-dipole interactions of isomorphic narrow-band-gap molecules.
    Takacs CJ; Sun Y; Welch GC; Perez LA; Liu X; Wen W; Bazan GC; Heeger AJ
    J Am Chem Soc; 2012 Oct; 134(40):16597-606. PubMed ID: 22950622
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Theoretical study on the correlation between band gap, bandwidth, and oscillator strength in fluorene-based donor-acceptor conjugated copolymers.
    Hung YC; Jiang JC; Chao CY; Su WF; Lin ST
    J Phys Chem B; 2009 Jun; 113(24):8268-77. PubMed ID: 19473008
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Oligothiophene-bridged bis(arylene ethynylene) small molecules for solution-processible organic solar cells with high open-circuit voltage.
    Liu Q; Zhan H; Ho CL; Dai FR; Fu Y; Xie Z; Wang L; Li JH; Yan F; Huang SP; Wong WY
    Chem Asian J; 2013 Aug; 8(8):1892-900. PubMed ID: 23650016
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Benzodi(pyridothiophene): a novel acceptor unit for application in A1-A-A1 type photovoltaic small molecules.
    Chen J; Xiao M; Duan L; Wang Q; Tan H; Su N; Liu Y; Yang R; Zhu W
    Phys Chem Chem Phys; 2016 Jan; 18(3):1507-15. PubMed ID: 26667581
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Vacuum-deposited small-molecule organic solar cells with high power conversion efficiencies by judicious molecular design and device optimization.
    Chen YH; Lin LY; Lu CW; Lin F; Huang ZY; Lin HW; Wang PH; Liu YH; Wong KT; Wen J; Miller DJ; Darling SB
    J Am Chem Soc; 2012 Aug; 134(33):13616-23. PubMed ID: 22831172
    [TBL] [Abstract][Full Text] [Related]  

  • 74. High performance low band gap polymer solar cells with a non-conventional acceptor.
    He Y; You J; Dou L; Chen CC; Richard E; Cha KC; Wu Y; Li G; Yang Y
    Chem Commun (Camb); 2012 Aug; 48(61):7616-8. PubMed ID: 22732926
    [TBL] [Abstract][Full Text] [Related]  

  • 75. High open circuit voltage in regioregular narrow band gap polymer solar cells.
    Wang M; Wang H; Yokoyama T; Liu X; Huang Y; Zhang Y; Nguyen TQ; Aramaki S; Bazan GC
    J Am Chem Soc; 2014 Sep; 136(36):12576-9. PubMed ID: 25122541
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Tailoring of energy levels in D-π-A organic dyes via fluorination of acceptor units for efficient dye-sensitized solar cells.
    Lee MW; Kim JY; Son HJ; Kim JY; Kim B; Kim H; Lee DK; Kim K; Lee DH; Ko MJ
    Sci Rep; 2015 Jan; 5():7711. PubMed ID: 25591722
    [TBL] [Abstract][Full Text] [Related]  

  • 77. An easily accessible donor-π-acceptor-conjugated small molecule from a 4,8-dialkoxybenzo[1,2-b:4,5-b']dithiophene unit for efficient solution-processed organic solar cells.
    Dutta P; Kim J; Eom SH; Lee WH; Kang IN; Lee SH
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):6669-75. PubMed ID: 23148515
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Three-Dimensional Spirothienoquinoline-Based Small Molecules for Organic Photovoltaic and Organic Resistive Memory Applications.
    Li P; Chan CY; Lai SL; Chan H; Leung MY; Hong EY; Li J; Wu H; Chan MY; Yam VW
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11865-11875. PubMed ID: 32115950
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Synthetic principles directing charge transport in low-band-gap dithienosilole-benzothiadiazole copolymers.
    Beaujuge PM; Tsao HN; Hansen MR; Amb CM; Risko C; Subbiah J; Choudhury KR; Mavrinskiy A; Pisula W; Brédas JL; So F; Müllen K; Reynolds JR
    J Am Chem Soc; 2012 May; 134(21):8944-57. PubMed ID: 22607114
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A Wide Band Gap Polymer with a Deep Highest Occupied Molecular Orbital Level Enables 14.2% Efficiency in Polymer Solar Cells.
    Li S; Ye L; Zhao W; Yan H; Yang B; Liu D; Li W; Ade H; Hou J
    J Am Chem Soc; 2018 Jun; 140(23):7159-7167. PubMed ID: 29737160
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.