BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 24253659)

  • 1. Multiple indices of the 'bounce' phenomenon obtained from the same human ears.
    Drexl M; Uberfuhr M; Weddell TD; Lukashkin AN; Wiegrebe L; Krause E; Gürkov R
    J Assoc Res Otolaryngol; 2014 Feb; 15(1):57-72. PubMed ID: 24253659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-frequency sound exposure causes reversible long-term changes of cochlear transfer characteristics.
    Drexl M; Otto L; Wiegrebe L; Marquardt T; Gürkov R; Krause E
    Hear Res; 2016 Feb; 332():87-94. PubMed ID: 26706707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microphonic and DPOAE measurements suggest a micromechanical mechanism for the 'bounce' phenomenon following low-frequency tones.
    Kirk DL; Moleirinho A; Patuzzi RB
    Hear Res; 1997 Oct; 112(1-2):69-86. PubMed ID: 9367230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slow oscillatory changes of DPOAE magnitude and phase after exposure to intense low-frequency sounds.
    Ueberfuhr MA; Drexl M
    J Neurophysiol; 2019 Jul; 122(1):118-131. PubMed ID: 31042448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient changes in cochlear potentials and DPOAEs after low-frequency tones: the 'two-minute bounce' revisited.
    Kirk DL; Patuzzi RB
    Hear Res; 1997 Oct; 112(1-2):49-68. PubMed ID: 9367229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aftereffects of Intense Low-Frequency Sound on Spontaneous Otoacoustic Emissions: Effect of Frequency and Level.
    Jeanson L; Wiegrebe L; Gürkov R; Krause E; Drexl M
    J Assoc Res Otolaryngol; 2017 Feb; 18(1):111-119. PubMed ID: 27761740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concurrent Acoustic Activation of the Medial Olivocochlear System Modifies the After-Effects of Intense Low-Frequency Sound on the Human Inner Ear.
    Kugler K; Wiegrebe L; Gürkov R; Krause E; Drexl M
    J Assoc Res Otolaryngol; 2015 Dec; 16(6):713-25. PubMed ID: 26264256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of the Human Inner Ear to Low-Frequency Sound.
    Drexl M; Krause E; Gürkov R; Wiegrebe L
    Adv Exp Med Biol; 2016; 894():275-284. PubMed ID: 27080668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of auditory percepts by transcutaneous electrical stimulation.
    Ueberfuhr MA; Braun A; Wiegrebe L; Grothe B; Drexl M
    Hear Res; 2017 Jul; 350():235-243. PubMed ID: 28323018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cochlear compression estimates from measurements of distortion-product otoacoustic emissions.
    Neely ST; Gorga MP; Dorn PA
    J Acoust Soc Am; 2003 Sep; 114(3):1499-507. PubMed ID: 14514203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cochlear transducer operating point adaptation.
    Zou Y; Zheng J; Ren T; Nuttall A
    J Acoust Soc Am; 2006 Apr; 119(4):2232-41. PubMed ID: 16642838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Auditory function in normal-hearing, noise-exposed human ears.
    Stamper GC; Johnson TA
    Ear Hear; 2015; 36(2):172-84. PubMed ID: 25350405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age-related changes in transiently evoked otoacoustic emissions and distortion product otoacoustic emissions in normal-hearing ears.
    Satoh Y; Kanzaki J; O-Uchi T; Yoshihara S
    Auris Nasus Larynx; 1998 May; 25(2):121-30. PubMed ID: 9673723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reflection of bounce phenomenon in TEOAE in humans: dependence upon exposure parameters.
    Gamgebeli Z; Burdzgla I; Bornitz M; Kevanishvili Z; Zahnert T
    Georgian Med News; 2007 Mar; (144):8-13. PubMed ID: 17473325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DPOAE-grams in patients with acute tonal tinnitus.
    Gouveris H; Maurer J; Mann W
    Otolaryngol Head Neck Surg; 2005 Apr; 132(4):550-3. PubMed ID: 15806043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphological and functional preservation of the outer hair cells from noise trauma by sound conditioning.
    Canlon B; Fransson A
    Hear Res; 1995 Apr; 84(1-2):112-24. PubMed ID: 7642444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distortion product otoacoustic emission suppression tuning curves in normal-hearing and hearing-impaired human ears.
    Gorga MP; Neely ST; Dierking DM; Dorn PA; Hoover BM; Fitzpatrick DF
    J Acoust Soc Am; 2003 Jul; 114(1):263-78. PubMed ID: 12880040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sources and mechanisms of DPOAE generation: implications for the prediction of auditory sensitivity.
    Shaffer LA; Withnell RH; Dhar S; Lilly DJ; Goodman SS; Harmon KM
    Ear Hear; 2003 Oct; 24(5):367-79. PubMed ID: 14534408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiopathological significance of distortion-product otoacoustic emissions at 2f1-f2 produced by high- versus low-level stimuli.
    Avan P; Bonfils P; Gilain L; Mom T
    J Acoust Soc Am; 2003 Jan; 113(1):430-41. PubMed ID: 12558280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Behavior of evoked otoacoustic emission under low-frequency tone exposure: Objective study of the bounce phenomenon in humans.
    Kevanishvili Z; Hofmann G; Burdzgla I; Pietsch M; Gamgebeli Z; Yarin Y; Tushishvili M; Zahnert T
    Hear Res; 2006 Dec; 222(1-2):62-9. PubMed ID: 17052872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.