These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 24253659)

  • 21. Reflection of bounce phenomenon in TEOAE in humans: dependence upon test-stimulus parameters.
    Tushishvili M; Burdzgla I; Yarin Y; Hofmann G; Kevanishvili Z
    Georgian Med News; 2007 May; (146):17-21. PubMed ID: 17595453
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Weakened Cochlear Nonlinearity During Human Aging and Perceptual Correlates.
    Abdala C; Ortmann AJ; Guardia YC
    Ear Hear; 2021; 42(4):832-845. PubMed ID: 33886169
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cochlear compression: effects of low-frequency biasing on quadratic distortion product otoacoustic emission.
    Bian L
    J Acoust Soc Am; 2004 Dec; 116(6):3559-71. PubMed ID: 15658707
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of cochlear function in patients with tinnitus using spontaneous and transitory evoked otoacoustic emissions.
    Santaolalla Montoya F; Ibargüen AM; del Rey AS; Fernández JM
    J Otolaryngol; 2007 Oct; 36(5):296-302. PubMed ID: 17963669
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of contralateral acoustic stimulation on the quadratic distortion product f2-f1 in humans.
    Wittekindt A; Gaese BH; Kössl M
    Hear Res; 2009 Jan; 247(1):27-33. PubMed ID: 18951964
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cubic distortion product otoacoustic emissions in young and aged chinchillas exposed to low-frequency noise.
    McFadden SL; Campo P
    J Acoust Soc Am; 1998 Oct; 104(4):2290-7. PubMed ID: 10491693
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relation of distortion-product otoacoustic emission input-output functions to loudness.
    Rasetshwane DM; Neely ST; Kopun JG; Gorga MP
    J Acoust Soc Am; 2013 Jul; 134(1):369-83. PubMed ID: 23862814
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Comparison of methods for early detection of noise vulnerability of the inner ear. Amplitude reduction of otoacoustic emissions are most sensitive at submaximal noise impulse exposure].
    Plinkert PK; Hemmert W; Zenner HP
    HNO; 1995 Feb; 43(2):89-97. PubMed ID: 7713771
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Noise induced temporary otoacoustic emission shifts.
    Attias J; Bresloff I
    J Basic Clin Physiol Pharmacol; 1996; 7(3):221-33. PubMed ID: 8910138
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distortion-product otoacoustic emissions in middle-aged subjects with normal versus potentially presbyacusic high-frequency hearing loss.
    Nieschalk M; Hustert B; Stoll W
    Audiology; 1998; 37(2):83-99. PubMed ID: 9547922
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Frequency selectivity of the human cochlea: Suppression tuning of spontaneous otoacoustic emissions.
    Manley GA; van Dijk P
    Hear Res; 2016 Jun; 336():53-62. PubMed ID: 27139323
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Air-Conducted Vestibular Evoked Myogenic Potential Testing in Children, Adolescents, and Young Adults: Thresholds, Frequency Tuning, and Effects of Sound Exposure.
    Rodriguez AI; Thomas MLA; Janky KL
    Ear Hear; 2019; 40(1):192-203. PubMed ID: 29870520
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relation of distortion product otoacoustic emission and tinnitus in normal hearing patients: a pilot study.
    Modh D; Katarkar A; Alam N; Jain A; Shah P
    Noise Health; 2014; 16(69):69-72. PubMed ID: 24804709
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Otoacoustic emissions from ears with spontaneous activity behave differently to those without: Stronger responses to tone bursts as well as to clicks.
    Jedrzejczak WW; Kochanek K; Skarzynski H
    PLoS One; 2018; 13(2):e0192930. PubMed ID: 29451905
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characteristics of transient-evoked otoacoustic emissions (TEOES) in neonates.
    Aidan D; Lestang P; Avan P; Bonfils P
    Acta Otolaryngol; 1997 Jan; 117(1):25-30. PubMed ID: 9039476
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Contralateral suppression of otoacoustic emissions: input-output functions in neonates.
    Campos Ude P; Hatzopoulos S; Kochanek K; Sliwa L; Skarzynski H; Carvallo RM
    Med Sci Monit; 2011 Oct; 17(10):CR557-62. PubMed ID: 21959609
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Auditory sensori-neural alterations induced by salicylate.
    Cazals Y
    Prog Neurobiol; 2000 Dec; 62(6):583-631. PubMed ID: 10880852
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fine structure of hearing threshold and loudness perception.
    Mauermann M; Long GR; Kollmeier B
    J Acoust Soc Am; 2004 Aug; 116(2):1066-80. PubMed ID: 15376673
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Similarity in loudness and distortion product otoacoustic emission input/output functions: implications for an objective hearing aid adjustment.
    Müller J; Janssen T
    J Acoust Soc Am; 2004 Jun; 115(6):3081-91. PubMed ID: 15237833
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contralateral acoustic suppression of transient evoked otoacoustic emissions--activation of the medial olivocochlear system.
    Komazec Z; Filipović D; Milosević D
    Med Pregl; 2003; 56(3-4):124-30. PubMed ID: 12899075
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.