BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 24253678)

  • 1. Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation.
    Kobayashi T; Nagasaka S; Senoura T; Itai RN; Nakanishi H; Nishizawa NK
    Nat Commun; 2013; 4():2792. PubMed ID: 24253678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IRONMAN peptide interacts with OsHRZ1 and OsHRZ2 to maintain Fe homeostasis in rice.
    Peng F; Li C; Lu C; Li Y; Xu P; Liang G
    J Exp Bot; 2022 Oct; 73(18):6463-6474. PubMed ID: 35789265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The basic leucine zipper transcription factor OsbZIP83 and the glutaredoxins OsGRX6 and OsGRX9 facilitate rice iron utilization under the control of OsHRZ ubiquitin ligases.
    Kobayashi T; Shinkawa H; Nagano AJ; Nishizawa NK
    Plant J; 2022 Jun; 110(6):1731-1750. PubMed ID: 35411594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron sensors and signals in response to iron deficiency.
    Kobayashi T; Nishizawa NK
    Plant Sci; 2014 Jul; 224():36-43. PubMed ID: 24908504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. OsbHLH058 and OsbHLH059 transcription factors positively regulate iron deficiency responses in rice.
    Kobayashi T; Ozu A; Kobayashi S; An G; Jeon JS; Nishizawa NK
    Plant Mol Biol; 2019 Nov; 101(4-5):471-486. PubMed ID: 31552586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Jasmonate signaling is activated in the very early stages of iron deficiency responses in rice roots.
    Kobayashi T; Itai RN; Senoura T; Oikawa T; Ishimaru Y; Ueda M; Nakanishi H; Nishizawa NK
    Plant Mol Biol; 2016 Jul; 91(4-5):533-47. PubMed ID: 27143046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oryza sativa POSITIVE REGULATOR OF IRON DEFICIENCY RESPONSE 2 (OsPRI2) and OsPRI3 are involved in the maintenance of Fe homeostasis.
    Zhang H; Li Y; Pu M; Xu P; Liang G; Yu D
    Plant Cell Environ; 2020 Jan; 43(1):261-274. PubMed ID: 31674679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. POSITIVE REGULATOR OF IRON HOMEOSTASIS1, OsPRI1, Facilitates Iron Homeostasis.
    Zhang H; Li Y; Yao X; Liang G; Yu D
    Plant Physiol; 2017 Sep; 175(1):543-554. PubMed ID: 28751317
    [No Abstract]   [Full Text] [Related]  

  • 9. Copper and ectopic expression of the Arabidopsis transport protein COPT1 alter iron homeostasis in rice (Oryza sativa L.).
    Andrés-Bordería A; Andrés F; Garcia-Molina A; Perea-García A; Domingo C; Puig S; Peñarrubia L
    Plant Mol Biol; 2017 Sep; 95(1-2):17-32. PubMed ID: 28631167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rice HRZ ubiquitin ligases are crucial for response to excess iron.
    Aung MS; Kobayashi T; Masuda H; Nishizawa NK
    Physiol Plant; 2018 Apr; ():. PubMed ID: 29655221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Small GTPase, OsRab6a, is Involved in the Regulation of Iron Homeostasis in Rice.
    Yang A; Zhang WH
    Plant Cell Physiol; 2016 Jun; 57(6):1271-80. PubMed ID: 27257291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous Enhancement of iron Deficiency Tolerance and Iron Accumulation in Rice by Combining the Knockdown of OsHRZ Ubiquitin Ligases with the Introduction of Engineered Ferric-chelate Reductase.
    Kobayashi T; Maeda K; Suzuki Y; Nishizawa NK
    Rice (N Y); 2022 Oct; 15(1):54. PubMed ID: 36315339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron deficiency-inducible peptide-coding genes OsIMA1 and OsIMA2 positively regulate a major pathway of iron uptake and translocation in rice.
    Kobayashi T; Nagano AJ; Nishizawa NK
    J Exp Bot; 2021 Mar; 72(6):2196-2211. PubMed ID: 33206982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A rice really interesting new gene H2-type E3 ligase, OsSIRH2-14, enhances salinity tolerance via ubiquitin/26S proteasome-mediated degradation of salt-related proteins.
    Park YC; Lim SD; Moon JC; Jang CS
    Plant Cell Environ; 2019 Nov; 42(11):3061-3076. PubMed ID: 31325169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defects in the rice aconitase-encoding OsACO1 gene alter iron homeostasis.
    Senoura T; Kobayashi T; An G; Nakanishi H; Nishizawa NK
    Plant Mol Biol; 2020 Dec; 104(6):629-645. PubMed ID: 32909184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A receptor-like protein RMC is involved in regulation of iron acquisition in rice.
    Yang A; Li Y; Xu Y; Zhang WH
    J Exp Bot; 2013 Nov; 64(16):5009-20. PubMed ID: 24014863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. OsNLA1, a RING-type ubiquitin ligase, maintains phosphate homeostasis in Oryza sativa via degradation of phosphate transporters.
    Yue W; Ying Y; Wang C; Zhao Y; Dong C; Whelan J; Shou H
    Plant J; 2017 Jun; 90(6):1040-1051. PubMed ID: 28229491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Knock-down of stress inducible OsSRFP1 encoding an E3 ubiquitin ligase with transcriptional activation activity confers abiotic stress tolerance through enhancing antioxidant protection in rice.
    Fang H; Meng Q; Xu J; Tang H; Tang S; Zhang H; Huang J
    Plant Mol Biol; 2015 Mar; 87(4-5):441-58. PubMed ID: 25667045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Knocking down mitochondrial iron transporter (MIT) reprograms primary and secondary metabolism in rice plants.
    Vigani G; Bashir K; Ishimaru Y; Lehmann M; Casiraghi FM; Nakanishi H; Seki M; Geigenberger P; Zocchi G; Nishizawa NK
    J Exp Bot; 2016 Mar; 67(5):1357-68. PubMed ID: 26685186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dissection of a rice microtubule-associated RING finger protein and its potential role in salt tolerance in Arabidopsis.
    Lim SD; Jung CG; Park YC; Lee SC; Lee C; Lim CW; Kim DS; Jang CS
    Plant Mol Biol; 2015 Nov; 89(4-5):365-84. PubMed ID: 26358044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.