BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 24253720)

  • 1. Circadian rhythms in crassulacean acid metabolism: phase relationships between gas exchange, leaf water relations and malate metabolism in Kalanchoë daigremontiana.
    Buchanan-Bollig IC; Smith JA
    Planta; 1984 Jun; 161(4):314-9. PubMed ID: 24253720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perturbations of malate accumulation and the endogenous rhythms of gas exchange in the Crassulacean acid metabolism plant Kalanchoë daigremontiana: testing the tonoplast-as-oscillator model.
    Wyka TP; Bohn A; Duarte HM; Kaiser F; Lüttge UE
    Planta; 2004 Aug; 219(4):705-13. PubMed ID: 15127301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redundancy of stomatal control for the circadian photosynthetic rhythm in Kalanchoë daigremontiana Hamet et Perrier.
    Wyka TP; Duarte HM; Lüttge UE
    Plant Biol (Stuttg); 2005 Mar; 7(2):176-81. PubMed ID: 15822013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circadian rhythms in Kalanchoë: effects of irradiance and temperature on gas exchange and carbon metabolism.
    Buchanan-Bollig IC
    Planta; 1984 Mar; 160(3):264-71. PubMed ID: 24258510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Day-night changes in leaf water relations associated with the rhythm of crassulacean acid metabolism in Kalanchoë daigremontiana.
    Smith JA; Lüttge U
    Planta; 1985 Feb; 163(2):272-82. PubMed ID: 24249350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tansley Review No. 37 Circadian rhythms: their origin and control.
    Wilkins MB
    New Phytol; 1992 Jul; 121(3):347-375. PubMed ID: 33874151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of C3 carboxylation to the circadian rhythm of carbon dioxide uptake in a Crassulacean acid metabolism plant Kalanchoë daigremontiana.
    Wyka TP; Lüttge UE
    J Exp Bot; 2003 May; 54(386):1471-9. PubMed ID: 12709493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of rhythmic subsystems in the circadian cycle of crassulacean acid metabolism under thermoperiodic perturbations.
    Bohn A; Hinderlich S; Hütt MT; Kaiser F; Lüttge U
    Biol Chem; 2003 May; 384(5):721-8. PubMed ID: 12817468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crassulacean acid metabolism (CAM) in Kalanchoë daigremontiana: Temperature response of phosphoenolpyruvate (PEP)-carboxylase in relation to allosteric effectors.
    Buchanan-Bollig IC; Kluge M
    Planta; 1981 Jul; 152(3):181-8. PubMed ID: 24302413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capacity of enzymes of the euphorbiacea Aleurites montana involved in CO2-fixation, compared to plants having C3-, C4- and Crassulacean acid metabolism.
    Grotjohann N; He P; Schmid GH
    Z Naturforsch C J Biosci; 2000; 55(5-6):383-91. PubMed ID: 10928549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of phosphoenolpyruvate carboxylase in rapidly prepared, desalted leaf extracts of the Crassulacean acid metabolism plant Mesembryanthemum crystallinum L.
    Winter K
    Planta; 1982 May; 154(4):298-308. PubMed ID: 24276156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discrimination in the dark. Resolving the interplay between metabolic and physical constraints to phosphoenolpyruvate carboxylase activity during the crassulacean acid metabolism cycle.
    Griffiths H; Cousins AB; Badger MR; von Caemmerer S
    Plant Physiol; 2007 Feb; 143(2):1055-67. PubMed ID: 17142488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the Mechanism of Reinitiation of Endogenous Crassulacean Acid Metabolism Rhythm by Temperature Changes.
    Grams T; Borland AM; Roberts A; Griffiths H; Beck F; Luttge U
    Plant Physiol; 1997 Apr; 113(4):1309-1317. PubMed ID: 12223675
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Boxall SF; Kadu N; Dever LV; Kneřová J; Waller JL; Gould PJD; Hartwell J
    Plant Cell; 2020 Apr; 32(4):1136-1160. PubMed ID: 32051209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity and quantity of ribulose bisphosphate carboxylase-and phosphoenolpyruvate carboxylase-protein in two Crassulacean acid metabolism plants in relation to leaf age, nitrogen nutrition, and point in time during a day/night cycle.
    Winter K; Foster JG; Schmitt MR; Edwards GE
    Planta; 1982 May; 154(4):309-17. PubMed ID: 24276157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leaf succulence determines the interplay between carboxylase systems and light use during Crassulacean acid metabolism in Kalanchöe species.
    Griffiths H; Robe WE; Girnus J; Maxwell K
    J Exp Bot; 2008; 59(7):1851-61. PubMed ID: 18408219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorylation of Phospho
    Boxall SF; Dever LV; Kneřová J; Gould PD; Hartwell J
    Plant Cell; 2017 Oct; 29(10):2519-2536. PubMed ID: 28887405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass-spectrometric evidence for the double-carboxylation pathway of malate synthesis by Crassulacean acid metabolism plants in light.
    Ritz D; Kluge M; Veith HJ
    Planta; 1986 Feb; 167(2):284-91. PubMed ID: 24241864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water relation parameters of the CAM plant Kalanchoë daigremontiana in relation to diurnal malate oscillations.
    Lüttge U; Ball E
    Oecologia; 1977 Jan; 31(1):85-94. PubMed ID: 28309153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endogenous rhythms and chaos in crassulacean acid metabolism.
    Lüttge U; Beck F
    Planta; 1992 Aug; 188(1):28-38. PubMed ID: 24178196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.