BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 24253873)

  • 1. Multivariate study of moose browsing in relation to phenol pattern in pine needles.
    Sunnerheim-Sjöberg K; Hämäläinen M
    J Chem Ecol; 1992 Apr; 18(4):659-72. PubMed ID: 24253873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of shoot growth stage of Pinus contorta and Pinus sylvestris on the growth and survival of Panolis flammea larvae.
    Watt AD
    Oecologia; 1987 Jun; 72(3):429-433. PubMed ID: 28311141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth, aboveground biomass, and nutrient concentration of young Scots pine and lodgepole pine in oil shale post-mining landscapes in Estonia.
    Kuznetsova T; Tilk M; Pärn H; Lukjanova A; Mandre M
    Environ Monit Assess; 2011 Dec; 183(1-4):341-50. PubMed ID: 21374054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cold acclimation of Pinus contorta and Pinus sylvestris assessed by chlorophyll fluorescence.
    Lindgren K; Hällgren JE
    Tree Physiol; 1993 Jul; 13(1):97-106. PubMed ID: 14969904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of solar UV radiation on the nitrogen metabolism in needles of Scots pine (Pinus sylvestris L.).
    Krywult M; Smykla J; Kinnunen H; Martz F; Sutinen ML; Lakkala K; Turunen M
    Environ Pollut; 2008 Dec; 156(3):1105-11. PubMed ID: 18508165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pine weevil (Hylobius abietis) antifeedants from lodgepole pine (Pinus contorta).
    Bratt K; Sunnerheim K; Nordenhem H; Nordlander G; Langström B
    J Chem Ecol; 2001 Nov; 27(11):2253-62. PubMed ID: 11817079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feast not famine: Nitrogen pools recover rapidly in 25-yr-old postfire lodgepole pine.
    Turner MG; Whitby TG; Romme WH
    Ecology; 2019 Mar; 100(3):e02626. PubMed ID: 30648264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The current state of environmental pollution with sulfur dioxide (SO
    Likus-Cieślik J; Socha J; Gruba P; Pietrzykowski M
    Environ Pollut; 2020 Mar; 258():113559. PubMed ID: 32005488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The chemical composition of pine foliage in relation to the population dynamics of the pine beauty moth, Panolis flammea, in Scotland.
    Watt AD
    Oecologia; 1989 Feb; 78(2):251-258. PubMed ID: 28312366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Levels of selected trace elements in Scots pine (Pinus sylvestris L.), silver birch (Betula pendula L.), and Norway maple (Acer platanoides L.) in an urbanized environment.
    Kosiorek M; Modrzewska B; Wyszkowski M
    Environ Monit Assess; 2016 Oct; 188(10):598. PubMed ID: 27696092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Food-plant effects on larval performance do not translate into differences in fitness between populations of Panolis flammea (Lepidoptera: Noctuidae).
    Vanbergen AJ; Hodgson DJ; Thurlow M; Hartley SE; Watt AD
    Bull Entomol Res; 2003 Dec; 93(6):553-9. PubMed ID: 14704102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in the concentrations of phenolics and photosynthates in Scots pine (Pinus sylvestris L.) seedlings exposed to nickel and copper.
    Roitto M; Rautio P; Julkunen-Tiitto R; Kukkola E; Huttunen S
    Environ Pollut; 2005 Oct; 137(3):603-9. PubMed ID: 16005771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Responses of soil mite communities (Acari: Oribatida, Mesostigmata) to elemental composition of mosses and pine needles and long-term air pollution in Scots pine (Pinus sylvestris L.) stands.
    Wierzbicka A; Dyderski MK; Kamczyc J; Rączka G; Jagodziński AM
    Sci Total Environ; 2019 Nov; 691():284-295. PubMed ID: 31323574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental and developmental effects on the biosynthesis of UV-B screening pigments in Scots pine (Pinus sylvestris L.) needles.
    Kaffarnik F; Seidlitz HK; Obermaier J; Sandermann H; Heller W
    Plant Cell Environ; 2006 Aug; 29(8):1484-91. PubMed ID: 16898012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of tree species richness and composition on moose winter browsing damage and foraging selectivity: an experimental study.
    Milligan HT; Koricheva J
    J Anim Ecol; 2013 Jul; 82(4):739-48. PubMed ID: 23363076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selectivity of Pinus sylvestris extract and essential oil to estrogen-insensitive breast cancer cells Pinus sylvestris against cancer cells.
    Hoai NT; Duc HV; Thao do T; Orav A; Raal A
    Pharmacogn Mag; 2015 Oct; 11(Suppl 2):S290-5. PubMed ID: 26664017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in defence responses of Pinus contorta and Pinus banksiana to the mountain pine beetle fungal associate Grosmannia clavigera are affected by water deficit.
    Arango-Velez A; El Kayal W; Copeland CC; Zaharia LI; Lusebrink I; Cooke JE
    Plant Cell Environ; 2016 Apr; 39(4):726-44. PubMed ID: 26205849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abortifacient effects of lodgepole pine (Pinus contorta) and common juniper (Juniperus communis) on cattle.
    Gardner DR; Panter KE; James LF; Stegelmeier BL
    Vet Hum Toxicol; 1998 Oct; 40(5):260-3. PubMed ID: 9778758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heavy metal accumulation of urban Scots pine (Pinus sylvestris L.) plantation.
    Çomaklı E; Bingöl MS
    Environ Monit Assess; 2021 Mar; 193(4):192. PubMed ID: 33723684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron and manganese migration in "soil-plant" system in Scots pine stands in conditions of contamination by the steel plant's emissions.
    Zaitsev GA; Dubrovina OA; Shainurov RI
    Sci Rep; 2020 Jul; 10(1):11025. PubMed ID: 32620934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.