These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 24253875)

  • 1. Shoot multiplication from mature trees of Douglas-fir (Pseudotsuga menziesii) and sugar pine (Pinus lambertiana).
    Gupta PK; Durzan DJ
    Plant Cell Rep; 1985 Aug; 4(4):177-9. PubMed ID: 24253875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variation in water potential, hydraulic characteristics and water source use in montane Douglas-fir and lodgepole pine trees in southwestern Alberta and consequences for seasonal changes in photosynthetic capacity.
    Andrews SF; Flanagan LB; Sharp EJ; Cai T
    Tree Physiol; 2012 Feb; 32(2):146-60. PubMed ID: 22318220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Xylem vulnerability to cavitation in Pseudotsuga menziesii and Pinus ponderosa from contrasting habitats.
    Stout DH; Sala A
    Tree Physiol; 2003 Jan; 23(1):43-50. PubMed ID: 12511303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Root growth and water use efficiency of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and lodgepole pine (Pinus contorta Dougl.) seedlings.
    Smit J; Van Den Driessche R
    Tree Physiol; 1992 Dec; 11(4):401-10. PubMed ID: 14969945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro plantlet regeneration from mature zygotic embryos of Pinus wallichiana A.B. Jacks.
    Mathur G; Nadgauda R
    Plant Cell Rep; 1999 Nov; 19(1):74-80. PubMed ID: 30754763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Efficient plant regeneration in vitro in Pinus massoniana L].
    Zhang Y; Wei ZM; Xi ML; Shi JS
    Fen Zi Xi Bao Sheng Wu Xue Bao; 2006 Jun; 39(3):271-6. PubMed ID: 16944603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple shoot production from seedling explants of slash pine (Pinus elliottii, Engelm.).
    Burns JA; Schwarz OJ; Schlarbaum SE
    Plant Cell Rep; 1991 Nov; 10(9):439-43. PubMed ID: 24221847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RELATIONSHIP BETWEEN SELF-FERTILITY, ALLOCATION OF GROWTH, AND INBREEDING DEPRESSION IN THREE CONIFEROUS SPECIES.
    Sorensen FC
    Evolution; 1999 Apr; 53(2):417-425. PubMed ID: 28565417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of environmental and cultural conditions on medium pH and explant growth performance of Douglas-fir ( Pseudotsuga menziesii) shoot cultures.
    Chen CC; Bates R; Carlson J
    F1000Res; 2014; 3():298. PubMed ID: 26535110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Native root xylem embolism and stomatal closure in stands of Douglas-fir and ponderosa pine: mitigation by hydraulic redistribution.
    Domec JC; Warren JM; Meinzer FC; Brooks JR; Coulombe R
    Oecologia; 2004 Sep; 141(1):7-16. PubMed ID: 15338263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hormonal control of second flushing in Douglas-fir shoots.
    Cline M; Yoders M; Desai D; Harrington C; Carlson W
    Tree Physiol; 2006 Oct; 26(10):1369-75. PubMed ID: 16815839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Freezing tolerance of conifer seeds and germinants.
    Hawkins BJ; Guest HJ; Kolotelo D
    Tree Physiol; 2003 Dec; 23(18):1237-46. PubMed ID: 14652223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic changes in concentrations of auxin, cytokinin, ABA and selected metabolites in multiple genotypes of Douglas-fir (Pseudotsuga menziesii) during a growing season.
    Kong L; Abrams SR; Owen SJ; Van Niejenhuis A; Von Aderkas P
    Tree Physiol; 2009 Feb; 29(2):183-90. PubMed ID: 19203943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental decline in height growth in Douglas-fir.
    Bond BJ; Czarnomski NM; Cooper C; Day ME; Greenwood MS
    Tree Physiol; 2007 Mar; 27(3):441-53. PubMed ID: 17241986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mutation hotspot in the chloroplast genome of a conifer (Douglas-fir: Pseudotsuga) is caused by variability in the number of direct repeats derived from a partially duplicated tRNA gene.
    Hipkins VD; Marshall KA; Neale DB; Rottmann WH; Strauss SH
    Curr Genet; 1995 May; 27(6):572-9. PubMed ID: 7553944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ectomycorrhizal fungi associated with ponderosa pine and Douglas-fir: a comparison of species richness in native western North American forests and Patagonian plantations from Argentina.
    Barroetaveña C; Cázares E; Rajchenberg M
    Mycorrhiza; 2007 Jul; 17(5):355-373. PubMed ID: 17345105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-occurring species differ in tree-ring delta(18)O trends.
    Marshall JD; Monserud RA
    Tree Physiol; 2006 Aug; 26(8):1055-66. PubMed ID: 16651255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of ammonium, nitrate and proton net fluxes along seedling roots of Douglas-fir and lodgepole pine grown and measured with different inorganic nitrogen sources.
    Hawkins BJ; Boukcim H; Plassard C
    Plant Cell Environ; 2008 Mar; 31(3):278-87. PubMed ID: 18034773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response of old-growth conifers to reduction in stand density in western Oregon forests.
    Latham P; Tappeiner J
    Tree Physiol; 2002 Feb; 22(2-3):137-46. PubMed ID: 11830410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Volatile and Within-Needle Terpene Changes to Douglas-fir Trees Associated With Douglas-fir Beetle (Coleoptera: Curculionidae) Attack.
    Giunta AD; Runyon JB; Jenkins MJ; Teich M
    Environ Entomol; 2016 Aug; 45(4):920-9. PubMed ID: 27231258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.