BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 24253896)

  • 21. Leptin promotes motility and invasiveness in human colon cancer cells by activating multiple signal-transduction pathways.
    Jaffe T; Schwartz B
    Int J Cancer; 2008 Dec; 123(11):2543-56. PubMed ID: 18767036
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RhoA mediates cyclooxygenase-2 signaling to disrupt the formation of adherens junctions and increase cell motility.
    Chang YW; Marlin JW; Chance TW; Jakobi R
    Cancer Res; 2006 Dec; 66(24):11700-8. PubMed ID: 17178865
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Abnormal expression of APRIL in colorectal cancer cells promotes tumor growth and metastasis].
    Wang GH; Lu MH; Wang JC; Wang F; Ding WF; Wang YG; Ju SQ; Wang HM
    Zhonghua Zhong Liu Za Zhi; 2013 Apr; 35(4):249-55. PubMed ID: 23985251
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mutated D4-guanine diphosphate-dissociation inhibitor is found in human leukemic cells and promotes leukemic cell invasion.
    Nakata Y; Kondoh K; Fukushima S; Hashiguchi A; Du W; Hayashi M; Fujimoto J; Hata J; Yamada T
    Exp Hematol; 2008 Jan; 36(1):37-50. PubMed ID: 18037226
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Knockdown of BDNF suppressed invasion of HepG2 and HCCLM3 cells, a mechanism associated with inactivation of RhoA or Rac1 and actin skeleton disorganization.
    Guo D; Sun W; Zhu L; Zhang H; Hou X; Liang J; Jiang X; Liu C
    APMIS; 2012 Jun; 120(6):469-76. PubMed ID: 22583359
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cdc42 negatively regulates intrinsic migration of highly aggressive breast cancer cells.
    Zuo Y; Wu Y; Chakraborty C
    J Cell Physiol; 2012 Apr; 227(4):1399-407. PubMed ID: 21618528
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RhoA is associated with invasion and poor prognosis in colorectal cancer.
    Jeong D; Park S; Kim H; Kim CJ; Ahn TS; Bae SB; Kim HJ; Kim TH; Im J; Lee MS; Kwon HY; Baek MJ
    Int J Oncol; 2016 Feb; 48(2):714-22. PubMed ID: 26648547
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increased diacylglycerol kinase ζ expression in human metastatic colon cancer cells augments Rho GTPase activity and contributes to enhanced invasion.
    Cai K; Mulatz K; Ard R; Nguyen T; Gee SH
    BMC Cancer; 2014 Mar; 14():208. PubMed ID: 24646293
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ischemia-reperfusion of small liver remnant promotes liver tumor growth and metastases--activation of cell invasion and migration pathways.
    Man K; Ng KT; Lo CM; Ho JW; Sun BS; Sun CK; Lee TK; Poon RT; Fan ST
    Liver Transpl; 2007 Dec; 13(12):1669-77. PubMed ID: 18044786
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Na+-H+ exchanger-1 induces cytoskeletal changes involving reciprocal RhoA and Rac1 signaling, resulting in motility and invasion in MDA-MB-435 cells.
    Paradiso A; Cardone RA; Bellizzi A; Bagorda A; Guerra L; Tommasino M; Casavola V; Reshkin SJ
    Breast Cancer Res; 2004; 6(6):R616-28. PubMed ID: 15535843
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vivo evidence supporting a metastasis suppressor role for Stard13 (Dlc2) in ErbB2 (Neu) oncogene induced mouse mammary tumors.
    Basak P; Leslie H; Dillon RL; Muller WJ; Raouf A; Mowat MRA
    Genes Chromosomes Cancer; 2018 Apr; 57(4):182-191. PubMed ID: 29218825
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer.
    De Bacco F; Luraghi P; Medico E; Reato G; Girolami F; Perera T; Gabriele P; Comoglio PM; Boccaccio C
    J Natl Cancer Inst; 2011 Apr; 103(8):645-61. PubMed ID: 21464397
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transforming growth factor-beta1 and regulators of apoptosis.
    Sulkowski S; Wincewicz A; Sulkowska M; Koda M
    Ann N Y Acad Sci; 2009 Aug; 1171():116-23. PubMed ID: 19723045
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transforming growth factor-beta1 modulates metalloproteinase-2 and -9, nitric oxide, RhoA and alpha-smooth muscle actin expression in colon adenocarcinoma cells.
    Paduch R; Kandefer-Szerszeń M; Szuster-Ciesielska A; Plewka K
    Cell Biol Int; 2010 Jan; 34(2):213-23. PubMed ID: 19947919
    [TBL] [Abstract][Full Text] [Related]  

  • 35. GCF2/LRRFIP1 promotes colorectal cancer metastasis and liver invasion through integrin-dependent RhoA activation.
    Ariake K; Ohtsuka H; Motoi F; Douchi D; Oikawa M; Rikiyama T; Fukase K; Katayose Y; Egawa S; Unno M
    Cancer Lett; 2012 Dec; 325(1):99-107. PubMed ID: 22750095
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel signaling molecules implicated in tumor-associated fatty acid synthase-dependent breast cancer cell proliferation and survival: Role of exogenous dietary fatty acids, p53-p21WAF1/CIP1, ERK1/2 MAPK, p27KIP1, BRCA1, and NF-kappaB.
    Menendez JA; Mehmi I; Atlas E; Colomer R; Lupu R
    Int J Oncol; 2004 Mar; 24(3):591-608. PubMed ID: 14767544
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anti-RhoA and anti-RhoC siRNAs inhibit the proliferation and invasiveness of MDA-MB-231 breast cancer cells in vitro and in vivo.
    Pillé JY; Denoyelle C; Varet J; Bertrand JR; Soria J; Opolon P; Lu H; Pritchard LL; Vannier JP; Malvy C; Soria C; Li H
    Mol Ther; 2005 Feb; 11(2):267-74. PubMed ID: 15668138
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Persistent activation of Rac1 in squamous carcinomas of the head and neck: evidence for an EGFR/Vav2 signaling axis involved in cell invasion.
    Patel V; Rosenfeldt HM; Lyons R; Servitja JM; Bustelo XR; Siroff M; Gutkind JS
    Carcinogenesis; 2007 Jun; 28(6):1145-52. PubMed ID: 17234718
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced intrinsic migration of aggressive breast cancer cells by inhibition of Rac1 GTPase.
    Zuo Y; Shields SK; Chakraborty C
    Biochem Biophys Res Commun; 2006 Dec; 351(2):361-7. PubMed ID: 17064663
    [TBL] [Abstract][Full Text] [Related]  

  • 40. p53 mediates bcl-2 phosphorylation and apoptosis via activation of the Cdc42/JNK1 pathway.
    Thomas A; Giesler T; White E
    Oncogene; 2000 Nov; 19(46):5259-69. PubMed ID: 11077443
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.