These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 24253951)

  • 1. Cell-free ethylene-forming systems lack stereochemical fidelity.
    Venis MA
    Planta; 1984 Sep; 162(1):85-8. PubMed ID: 24253951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of the conversion of 1-amino-2-ethylcyclopropane-1-carboxylic acid stereoisomers to 1-butene by pea epicotyls and by a cell-free system.
    McKeon TA; Shang Fa Yang
    Planta; 1984 Jan; 160(1):84-7. PubMed ID: 24258376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-Dependent Discrimination between Stereoisomers of 1-Amino-2-Ethylcyclopropane-1-Carboxylic Acid in Carnation Petals.
    Adam Z; Mayak S
    Plant Physiol; 1986 Apr; 80(4):1045-7. PubMed ID: 16664717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The physiological role of lipoxygenase in ethylene formation from 1-aminocyclopropane-1-carboxylic acid in oat leaves.
    Wang TT; Yang SF
    Planta; 1987 Feb; 170(2):190-6. PubMed ID: 24232877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conversion of 1-aminocyclopropane-1-carboxylic acid to ethylene by isolated vacuoles of Pisum sativum L.
    Guy M; Kende H
    Planta; 1984 Mar; 160(3):281-7. PubMed ID: 24258513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stereospecific conversion of 1-aminocyclopropanecarboxylic Acid to ethylene by plant tissues : conversion of stereoisomers of 1-amino-2-ethylcyclopropanecarboxylic Acid to 1-butene.
    Hoffman NE; Yang SF; Ichihara A; Sakamura S
    Plant Physiol; 1982 Jul; 70(1):195-9. PubMed ID: 16662444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bicarbonate/CO(2)-Facilitated Conversion of 1-Amino-cyclopropane-1-carboxylic Acid to Ethylene in Model Systems and Intact Tissues.
    McRae DG; Coker JA; Legge RL; Thompson JE
    Plant Physiol; 1983 Nov; 73(3):784-90. PubMed ID: 16663301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ethylene formation from 1-aminocyclopropane-1-carboxylic acid in homogenates of etiolated pea seedlings.
    Konze JR; Kende H
    Planta; 1979 Jan; 146(3):293-301. PubMed ID: 24318182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipoxygenase-generated hydroperoxides account for the nonphysiological features of ethylene formation from 1-aminocyclopropane-1-carboxylic acid by microsomal membranes of carnations.
    Lynch DV; Sridhara S; Thompson JE
    Planta; 1985 May; 164(1):121-5. PubMed ID: 24249510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of Auxin-induced Ethylene Production in Mung Bean Hypocotyls: Role of 1-Aminocyclopropane-1-Carboxylic Acid.
    Yu YB; Adams DO; Yang SF
    Plant Physiol; 1979 Mar; 63(3):589-90. PubMed ID: 16660773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free radicals play little role in the conversion of 1-aminocyclopropane-1-carboxylic acid to ethylene in carnation membrane fraction.
    Adam Z; Borochov A; Mayak S
    Free Radic Res Commun; 1986; 2(3):137-42. PubMed ID: 3145243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The enzymatic malonylation of 1-aminocyclopropane-1-carboxylic acid in homogenates of mung-bean hypocotyls.
    Kionka C; Amrhein N
    Planta; 1984 Sep; 162(3):226-35. PubMed ID: 24253094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ethylene biosynthesis: Identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene.
    Adams DO; Yang SF
    Proc Natl Acad Sci U S A; 1979 Jan; 76(1):170-4. PubMed ID: 16592605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subcellular localization of the sites of conversion of 1-aminocyclopropane-1-carboxylic acid into ethylene in plant cells.
    Bouzayen M; Latché A; Pech JC
    Planta; 1990 Jan; 180(2):175-80. PubMed ID: 24201941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interference of phenolic compounds with the 1-aminocyclopropane-1-carboxylic Acid assay.
    Sitrit Y; Riov J; Blumenfeld A
    Plant Physiol; 1988 Jan; 86(1):13-5. PubMed ID: 16665853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ethylene formation from 1-aminocyclopropane-1-carboxylic acid by microsomal membranes from senescing carnation flowers.
    Mayak S; Legge RL; Thompson JE
    Planta; 1981 Oct; 153(1):49-55. PubMed ID: 24276706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of ethylene biosynthesis in carnation petals by cytokinin.
    Mor Y; Spiegelstein H; Halevy AH
    Plant Physiol; 1983 Mar; 71(3):541-6. PubMed ID: 16662863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of the defoliant thidiazuron on ethylene evolution from mung bean hypocotyl segments.
    Suttle JC
    Plant Physiol; 1984 Aug; 75(4):902-7. PubMed ID: 16663757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a tomato gene for the ethylene-forming enzyme by expression in yeast.
    Hamilton AJ; Bouzayen M; Grierson D
    Proc Natl Acad Sci U S A; 1991 Aug; 88(16):7434-7. PubMed ID: 1714605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of the Conversion of 1-Aminocyclopropane-1-carboxylic Acid to Ethylene by Structural Analogs, Inhibitors of Electron Transfer, Uncouplers of Oxidative Phosphorylation, and Free Radical Scavengers.
    Apelbaum A; Wang SY; Burgoon AC; Baker JE; Lieberman M
    Plant Physiol; 1981 Jan; 67(1):74-9. PubMed ID: 16661637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.