These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 24254389)

  • 1. Can we forecast the effects of climate change on entomophagous biological control agents?
    Aguilar-Fenollosa E; Jacas JA
    Pest Manag Sci; 2014 Jun; 70(6):853-9. PubMed ID: 24254389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Connecting scales: achieving in-field pest control from areawide and landscape ecology studies.
    Schellhorn NA; Parry HR; Macfadyen S; Wang Y; Zalucki MP
    Insect Sci; 2015 Feb; 22(1):35-51. PubMed ID: 25099692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climate Change and Tritrophic Interactions: Will Modifications to Greenhouse Gas Emissions Increase the Vulnerability of Herbivorous Insects to Natural Enemies?
    Boullis A; Francis F; Verheggen FJ
    Environ Entomol; 2015 Apr; 44(2):277-86. PubMed ID: 26313181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of crop species richness on pest-natural enemy systems based on an experimental model system using a microlandscape.
    Zhao Z; Shi P; Men X; Ouyang F; Ge F
    Sci China Life Sci; 2013 Aug; 56(8):758-66. PubMed ID: 23838809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ecology of saprophagous macroarthropods (millipedes, woodlice) in the context of global change.
    David JF; Handa IT
    Biol Rev Camb Philos Soc; 2010 Nov; 85(4):881-95. PubMed ID: 20412191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate warming affects biological invasions by shifting interactions of plants and herbivores.
    Lu X; Siemann E; Shao X; Wei H; Ding J
    Glob Chang Biol; 2013 Aug; 19(8):2339-47. PubMed ID: 23640751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological control agents in the Anthropocene: current risks and future options.
    Thurman JH; Crowder DW; Northfield TD
    Curr Opin Insect Sci; 2017 Oct; 23():59-64. PubMed ID: 29129283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. More than taking the heat: crops and global change.
    Long SP; Ort DR
    Curr Opin Plant Biol; 2010 Jun; 13(3):241-8. PubMed ID: 20494611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms for flowering plants to benefit arthropod natural enemies of insect pests: prospects for enhanced use in agriculture.
    Lu ZX; Zhu PY; Gurr GM; Zheng XS; Read DM; Heong KL; Yang YJ; Xu HX
    Insect Sci; 2014 Feb; 21(1):1-12. PubMed ID: 23955976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elevated temperature and drought interact to reduce parasitoid effectiveness in suppressing hosts.
    Romo CM; Tylianakis JM
    PLoS One; 2013; 8(3):e58136. PubMed ID: 23472147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the impact of arthropod natural enemies on crop pests at the field scale.
    Macfadyen S; Davies AP; Zalucki MP
    Insect Sci; 2015 Feb; 22(1):20-34. PubMed ID: 25219624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can climate change jeopardize predator control of invasive herbivore species? A case study in avocado agro-ecosystems in Spain.
    Montserrat M; Sahún RM; Guzmán C
    Exp Appl Acarol; 2013 Feb; 59(1-2):27-42. PubMed ID: 22527837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. United States Department of Agriculture-Agricultural Research Service research on biological control of arthropods.
    Hopper KR
    Pest Manag Sci; 2003; 59(6-7):643-53. PubMed ID: 12846314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chapter 1. Impacts of the oceans on climate change.
    Reid PC; Fischer AC; Lewis-Brown E; Meredith MP; Sparrow M; Andersson AJ; Antia A; Bates NR; Bathmann U; Beaugrand G; Brix H; Dye S; Edwards M; Furevik T; Gangstø R; Hátún H; Hopcroft RR; Kendall M; Kasten S; Keeling R; Le Quéré C; Mackenzie FT; Malin G; Mauritzen C; Olafsson J; Paull C; Rignot E; Shimada K; Vogt M; Wallace C; Wang Z; Washington R
    Adv Mar Biol; 2009; 56():1-150. PubMed ID: 19895974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Range-expanding pests and pathogens in a warming world.
    Bebber DP
    Annu Rev Phytopathol; 2015; 53():335-56. PubMed ID: 26047565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elevated temperature reduces wheat grain yield by increasing pests and decreasing soil mutualists.
    Tian B; Yu Z; Pei Y; Zhang Z; Siemann E; Wan S; Ding J
    Pest Manag Sci; 2019 Feb; 75(2):466-475. PubMed ID: 29998550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How is ozone pollution reducing our food supply?
    Wilkinson S; Mills G; Illidge R; Davies WJ
    J Exp Bot; 2012 Jan; 63(2):527-36. PubMed ID: 22016429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pest management under climate change: The importance of understanding tritrophic relations.
    Castex V; Beniston M; Calanca P; Fleury D; Moreau J
    Sci Total Environ; 2018 Mar; 616-617():397-407. PubMed ID: 29127793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predator diversity dampens trophic cascades.
    Finke DL; Denno RF
    Nature; 2004 May; 429(6990):407-10. PubMed ID: 15164061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Landscape changes have greater effects than climate changes on six insect pests in China.
    Zhao Z; Sandhu HS; Ouyang F; Ge F
    Sci China Life Sci; 2016 Jun; 59(6):627-33. PubMed ID: 26825944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.