BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 24254566)

  • 1. Screening of key genes associated with contused rat spinal cord with DNA microarray.
    Chen XJ; Mou XQ; Zou YG; Peng ZY; Yang JX
    Eur Rev Med Pharmacol Sci; 2013 Nov; 17(21):2949-55. PubMed ID: 24254566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MIR-142-5p and miR-9 may be involved in squamous lung cancer by regulating cell cycle related genes.
    Su YH; Zhou Z; Yang KP; Wang XG; Zhu Y; Fa XE
    Eur Rev Med Pharmacol Sci; 2013 Dec; 17(23):3213-20. PubMed ID: 24338464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene expression signature analysis and protein-protein interaction network construction of spinal cord injury.
    Lai J; He X; Wang F; Tan JM; Wang JX; Xing SM; Shen LB; Fang LQ; Yang P; Tan JM
    Eur Rev Med Pharmacol Sci; 2013 Nov; 17(21):2941-8. PubMed ID: 24254565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Gene expression profile in acute spinal cord injury screened by cDNA microarray: experiment with rats].
    Dong DM; Yao M; Li KS; Wang YS
    Zhonghua Yi Xue Za Zhi; 2006 Sep; 86(35):2495-501. PubMed ID: 17156681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA Microarray Analysis in Screening Features of Genes Involved in Spinal Cord Injury.
    Liu Y; Wang Y; Teng Z; Zhang X; Ding M; Zhang Z; Chen J; Xu Y
    Med Sci Monit; 2016 May; 22():1571-81. PubMed ID: 27160807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinformatic analysis of microarray data reveals several key genes related to heart failure.
    Zhang ZG; Cao H; Liu G; Fan HM; Liu ZM
    Eur Rev Med Pharmacol Sci; 2013 Sep; 17(18):2441-8. PubMed ID: 24089221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. cDNA microarray analysis of spinal cord injury and regeneration related genes in rat.
    Xiao L; Ma ZL; Li X; Lin QX; Que HP; Liu SJ
    Sheng Li Xue Bao; 2005 Dec; 57(6):705-13. PubMed ID: 16344894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of gene expression in rats with spinal cord injury based on microarray data.
    Chen G; Fang X; Yu M
    Mol Med Rep; 2015 Aug; 12(2):2465-72. PubMed ID: 25936407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening of feature genes of the renal cell carcinoma with DNA microarray.
    Feng JY; Diao XW; Fan MQ; Wang PX; Xiao Y; Zhong X; Wu RH; Huang CB
    Eur Rev Med Pharmacol Sci; 2013 Nov; 17(22):2994-3001. PubMed ID: 24302177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential gene expression after complete spinal cord transection in adult rats: an analysis focused on a subchronic post-injury stage.
    Zhang KH; Xiao HS; Lu PH; Shi J; Li GD; Wang YT; Han S; Zhang FX; Lu YJ; Zhang X; Xu XM
    Neuroscience; 2004; 128(2):375-88. PubMed ID: 15350649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ossification of the posterior longitudinal ligament related genes identification using microarray gene expression profiling and bioinformatics analysis.
    He H; Mao L; Xu P; Xi Y; Xu N; Xue M; Yu J; Ye X
    Gene; 2014 Jan; 533(2):515-9. PubMed ID: 24055420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of crucial genes associated with rat traumatic spinal cord injury.
    Yang Z; Lv Q; Wang Z; Dong X; Yang R; Zhao W
    Mol Med Rep; 2017 Apr; 15(4):1997-2006. PubMed ID: 28260098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene expression profiling of cathepsin D, metallothioneins-1 and -2, osteopontin, and tenascin-C in a mouse spinal cord injury model by cDNA microarray analysis.
    Hashimoto M; Koda M; Ino H; Yoshinaga K; Murata A; Yamazaki M; Kojima K; Chiba K; Mori C; Moriya H
    Acta Neuropathol; 2005 Feb; 109(2):165-80. PubMed ID: 15592854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of key genes and pathways associated with spinal cord injury.
    Zhang YH; Song J; Wang LG; Shao J
    Mol Med Rep; 2017 Apr; 15(4):1577-1584. PubMed ID: 28259986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative analysis of molecular mechanism of spinal cord injury with time based on bioinformatics data.
    Wen T; Hou J; Wang F; Zhang Y; Zhang T; Sun T
    Spinal Cord; 2016 Jun; 54(6):431-8. PubMed ID: 26503224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mechanisms underlying the positive role of treadmill training in locomotor recovery after spinal cord injury.
    Liu Q; Zhang B; Liu C; Zhao D
    Spinal Cord; 2017 May; 55(5):441-446. PubMed ID: 27922623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. D-Serine exposure resulted in gene expression changes indicative of activation of fibrogenic pathways and down-regulation of energy metabolism and oxidative stress response.
    Soto A; DelRaso NJ; Schlager JJ; Chan VT
    Toxicology; 2008 Jan; 243(1-2):177-92. PubMed ID: 18061331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of key genes and modules during the courses of traumatic brain injury with microarray technology.
    Zhang XY; Gu CG; Gu JW; Zhang JH; Zhu H; Zhang YC; Cheng JM; Li YM; Yang T
    Genet Mol Res; 2014 Nov; 13(4):9220-8. PubMed ID: 25501144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinformatics Analysis of microRNA Time-Course Expression in Brown Rat (Rattus norvegicus): Spinal Cord Injury Self-Repair.
    Liu Y; Han N; Li Q; Li Z
    Spine (Phila Pa 1976); 2016 Jan; 41(2):97-103. PubMed ID: 26641843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microarray analysis of gene expression patterns in adult spinal motoneurons after different types of axonal injuries.
    Yang Y; Xie Y; Chai H; Fan M; Liu S; Liu H; Bruce I; Wu W
    Brain Res; 2006 Feb; 1075(1):1-12. PubMed ID: 16460709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.