These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 24255111)

  • 1. MRI of the human brain at 130 microtesla.
    Inglis B; Buckenmaier K; Sangiorgio P; Pedersen AF; Nichols MA; Clarke J
    Proc Natl Acad Sci U S A; 2013 Nov; 110(48):19194-201. PubMed ID: 24255111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microtesla MRI with a superconducting quantum interference device.
    McDermott R; Lee S; ten Haken B; Trabesinger AH; Pines A; Clarke J
    Proc Natl Acad Sci U S A; 2004 May; 101(21):7857-61. PubMed ID: 15141077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microtesla MRI of the human brain combined with MEG.
    Zotev VS; Matlashov AN; Volegov PL; Savukov IM; Espy MA; Mosher JC; Gomez JJ; Kraus RH
    J Magn Reson; 2008 Sep; 194(1):115-20. PubMed ID: 18619876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SQUID-detected magnetic resonance imaging in microtesla fields.
    Clarke J; Hatridge M; Mössle M
    Annu Rev Biomed Eng; 2007; 9():389-413. PubMed ID: 17328671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid ultra-low-field MRI and magnetoencephalography system based on a commercial whole-head neuromagnetometer.
    Vesanen PT; Nieminen JO; Zevenhoven KC; Dabek J; Parkkonen LT; Zhdanov AV; Luomahaara J; Hassel J; Penttilä J; Simola J; Ahonen AI; Mäkelä JP; Ilmoniemi RJ
    Magn Reson Med; 2013 Jun; 69(6):1795-804. PubMed ID: 22807201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility of functional MRI at ultralow magnetic field via changes in cerebral blood volume.
    Buckenmaier K; Pedersen A; SanGiorgio P; Scheffler K; Clarke J; Inglis B
    Neuroimage; 2019 Feb; 186():185-191. PubMed ID: 30394329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SQUID-detected MRI at 132 microT with T1-weighted contrast established at 10 microT--300 mT.
    Lee SK; Mössle M; Myers W; Kelso N; Trabesinger AH; Pines A; Clarke J
    Magn Reson Med; 2005 Jan; 53(1):9-14. PubMed ID: 15690496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultralow-field and spin-locking relaxation dispersion in postmortem pig brain.
    Dong H; Hwang SM; Wendland M; You L; Clarke J; Inglis B
    Magn Reson Med; 2017 Dec; 78(6):2342-2351. PubMed ID: 28164366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NMR properties of human median nerve at 3 T: proton density, T1, T2, and magnetization transfer.
    Gambarota G; Mekle R; Mlynárik V; Krueger G
    J Magn Reson Imaging; 2009 Apr; 29(4):982-6. PubMed ID: 19306447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parallel MRI at microtesla fields.
    Zotev VS; Volegov PL; Matlashov AN; Espy MA; Mosher JC; Kraus RH
    J Magn Reson; 2008 Jun; 192(2):197-208. PubMed ID: 18328753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Carr-Purcell refocusing pulse trains on transverse relaxation times of metabolites in rat brain at 9.4 Tesla.
    Deelchand DK; Henry PG; Marjańska M
    Magn Reson Med; 2015 Jan; 73(1):13-20. PubMed ID: 24436256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic field dependence of the distribution of NMR relaxation times in the living human brain.
    Oros-Peusquens AM; Laurila M; Shah NJ
    MAGMA; 2008 Mar; 21(1-2):131-47. PubMed ID: 18338191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prototype phantoms for characterization of ultralow field magnetic resonance imaging.
    Boss MA; Mates JA; Busch SE; SanGiorgio P; Russek SE; Buckenmaier K; Irwin KD; Cho HM; Hilton GC; Clarke J
    Magn Reson Med; 2014 Dec; 72(6):1793-800. PubMed ID: 24281979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system.
    Eom BH; Penanen K; Hahn I
    Rev Sci Instrum; 2014 Sep; 85(9):094302. PubMed ID: 25273745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous magnetoencephalography and SQUID detected nuclear MR in microtesla magnetic fields.
    Volegov P; Matlachov AN; Espy MA; George JS; Kraus RH
    Magn Reson Med; 2004 Sep; 52(3):467-70. PubMed ID: 15334563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gradient-excitation encoding combined with frequency and phase encodings for three-dimensional ultra-low-field MRI.
    Dabek J; Zevenhoven KC; Nieminen JO; Vesanen PT; Sepponen R; Ilmoniemi RJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1093-7. PubMed ID: 23366086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cooperative T1 and T2 effects on contrast using a new driven inversion spin-echo (DISE) MRI pulse sequence.
    Conturo TE; Kessler RM; Beth AH
    Magn Reson Med; 1990 Sep; 15(3):397-419. PubMed ID: 2233220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of normal brain tissue using seven calculated MRI parameters and a statistical analysis system.
    Hyman TJ; Kurland RJ; Levy GC; Shoop JD
    Magn Reson Med; 1989 Jul; 11(1):22-34. PubMed ID: 2747514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiexponential proton spin-spin relaxation in MR imaging of human brain tumors.
    Schad LR; Brix G; Zuna I; Härle W; Lorenz WJ; Semmler W
    J Comput Assist Tomogr; 1989; 13(4):577-87. PubMed ID: 2545751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An advanced phantom study assessing the feasibility of neuronal current imaging by ultra-low-field NMR.
    Körber R; Nieminen JO; Höfner N; Jazbinšek V; Scheer HJ; Kim K; Burghoff M
    J Magn Reson; 2013 Dec; 237():182-190. PubMed ID: 24252245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.