These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 24255914)
1. Quantitative evaluation of Coulombic interactions in the oriented-attachment growth of nanotubes. Zhang Y; He W; Wen K; Wang X; Lu H; Lin X; Dickerson JH Analyst; 2014 Jan; 139(2):371-4. PubMed ID: 24255914 [TBL] [Abstract][Full Text] [Related]
2. The evaluation of Coulombic interaction in the oriented-attachment growth of colloidal nanorods. He W; Lin J; Lin X; Lu N; Zhou M; Zhang KH Analyst; 2012 Nov; 137(21):4917-20. PubMed ID: 23008830 [TBL] [Abstract][Full Text] [Related]
3. Understanding the oriented-attachment growth of nanocrystals from an energy point of view: a review. Lv W; He W; Wang X; Niu Y; Cao H; Dickerson JH; Wang Z Nanoscale; 2014 Mar; 6(5):2531-47. PubMed ID: 24481078 [TBL] [Abstract][Full Text] [Related]
4. Separation-dependence evolution of inter-particle interaction in the oriented-attachment growth of nanorods: a case of hexagonal nanocrystals. Song Y; Liu A; Pan Y; Wang X; Hu J; Hou X; Lin X; He W Analyst; 2014 Jul; 139(13):3393-7. PubMed ID: 24816566 [TBL] [Abstract][Full Text] [Related]
5. An analytical expression for the van der Waals interaction in oriented-attachment growth: a spherical nanoparticle and a growing cylindrical nanorod. He W; Lin J; Wang B; Tuo S; Pantelides ST; Dickerson JH Phys Chem Chem Phys; 2012 Apr; 14(13):4548-53. PubMed ID: 22361953 [TBL] [Abstract][Full Text] [Related]
6. An energy investigation into 1D/2D oriented-attachment assemblies of 1D Ag nanocrystals. Lv W; Yang X; Wang W; Niu Y; Liu Z; He W Chemphyschem; 2014 Sep; 15(13):2688-91. PubMed ID: 24954815 [TBL] [Abstract][Full Text] [Related]
7. Controlling nanotube dimensions: correlation between composition, diameter, and internal energy of single-walled mixed oxide nanotubes. Konduri S; Mukherjee S; Nair S ACS Nano; 2007 Dec; 1(5):393-402. PubMed ID: 19206659 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and growth mechanism of multilayer TiO2 nanotube arrays. Guan D; Wang Y Nanoscale; 2012 Apr; 4(9):2968-77. PubMed ID: 22460605 [TBL] [Abstract][Full Text] [Related]
9. Dynamic evolution of supported metal nanocatalyst/carbon structure during single-walled carbon nanotube growth. Gómez-Gualdrón DA; McKenzie GD; Alvarado JF; Balbuena PB ACS Nano; 2012 Jan; 6(1):720-35. PubMed ID: 22133430 [TBL] [Abstract][Full Text] [Related]
10. NaOH concentration effect on the oriented attachment growth kinetics of ZnS. Wang Y; Zhang J; Yang Y; Huang F; Zheng J; Chen D; Yan F; Lin Z; Wang C J Phys Chem B; 2007 May; 111(19):5290-4. PubMed ID: 17451269 [TBL] [Abstract][Full Text] [Related]
11. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. Singh R; Pantarotto D; McCarthy D; Chaloin O; Hoebeke J; Partidos CD; Briand JP; Prato M; Bianco A; Kostarelos K J Am Chem Soc; 2005 Mar; 127(12):4388-96. PubMed ID: 15783221 [TBL] [Abstract][Full Text] [Related]
12. TiO2 nanotubes on Ti: Influence of nanoscale morphology on bone cell-materials interaction. Das K; Bose S; Bandyopadhyay A J Biomed Mater Res A; 2009 Jul; 90(1):225-37. PubMed ID: 18496867 [TBL] [Abstract][Full Text] [Related]
13. Theoretical study of the structures and electronic properties of all-surface KI and CsI nanocrystals encapsulated in single walled carbon nanotubes. Bichoutskaia E; Pyper NC J Chem Phys; 2008 Oct; 129(15):154701. PubMed ID: 19045212 [TBL] [Abstract][Full Text] [Related]
14. High-density assembly of gold nanoparticles on multiwalled carbon nanotubes using 1-pyrenemethylamine as interlinker. Ou YY; Huang MH J Phys Chem B; 2006 Feb; 110(5):2031-6. PubMed ID: 16471779 [TBL] [Abstract][Full Text] [Related]
15. Thermal physics in carbon nanotube growth kinetics. Louchev OA; Kanda H; Rosén A; Bolton K J Chem Phys; 2004 Jul; 121(1):446-56. PubMed ID: 15260566 [TBL] [Abstract][Full Text] [Related]
16. Subnanometer porous thin films by the co-assembly of nanotube subunits and block copolymers. Xu T; Zhao N; Ren F; Hourani R; Lee MT; Shu JY; Mao S; Helms BA ACS Nano; 2011 Feb; 5(2):1376-84. PubMed ID: 21210699 [TBL] [Abstract][Full Text] [Related]
17. The formation of low-dimensional inorganic nanotube crystallites in carbon nanotubes. Wilson M J Chem Phys; 2006 Mar; 124(12):124706. PubMed ID: 16599717 [TBL] [Abstract][Full Text] [Related]
18. A possible role of the dipole moment of the catalyst droplet in nanotube growth, alignment, chirality, and characteristics. Mohammad SN Nanotechnology; 2012 Mar; 23(8):085701. PubMed ID: 22293434 [TBL] [Abstract][Full Text] [Related]
19. Interactions between metals and carbon nanotubes: at the interface between old and new materials. Banhart F Nanoscale; 2009 Nov; 1(2):201-13. PubMed ID: 20644839 [TBL] [Abstract][Full Text] [Related]
20. Synthesis of shape-controlled beta-In2S3 nanotubes through oriented attachment of nanoparticles. Kim YH; Lee JH; Shin DW; Park SM; Moon JS; Nam JG; Yoo JB Chem Commun (Camb); 2010 Apr; 46(13):2292-4. PubMed ID: 20234936 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]