These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Discovery of nigerose phosphorylase from Clostridium phytofermentans. Nihira T; Nakai H; Chiku K; Kitaoka M Appl Microbiol Biotechnol; 2012 Feb; 93(4):1513-22. PubMed ID: 21808968 [TBL] [Abstract][Full Text] [Related]
6. Efficient chemoenzymatic oligosaccharide synthesis by reverse phosphorolysis using cellobiose phosphorylase and cellodextrin phosphorylase from Clostridium thermocellum. Nakai H; Hachem MA; Petersen BO; Westphal Y; Mannerstedt K; Baumann MJ; Dilokpimol A; Schols HA; Duus JØ; Svensson B Biochimie; 2010 Dec; 92(12):1818-26. PubMed ID: 20678539 [TBL] [Abstract][Full Text] [Related]
7. Enzymatic properties of recombinant kojibiose phosphorylase from Caldicellulosiruptor saccharolyticus ATCC43494. Yamamoto T; Nishio-Kosaka M; Izawa S; Aga H; Nishimoto T; Chaen H; Fukuda S Biosci Biotechnol Biochem; 2011; 75(6):1208-10. PubMed ID: 21670511 [TBL] [Abstract][Full Text] [Related]
8. Hyper expression of kojibiose phosphorylase gene and trehalose phosphorylase gene from Thermoanaerobacter brockii ATCC35047 in Bacillus subtilis and selaginose synthesis utilizing two phosphorylases. Yamamoto T; Mukai K; Maruta K; Watanabe H; Yamashita H; Nishimoto T; Kubota M; Chaen H; Fukuda S J Biosci Bioeng; 2005 Sep; 100(3):343-6. PubMed ID: 16243288 [TBL] [Abstract][Full Text] [Related]
9. The structure of a GH149 β-(1 → 3) glucan phosphorylase reveals a new surface oligosaccharide binding site and additional domains that are absent in the disaccharide-specific GH94 glucose-β-(1 → 3)-glucose (laminaribiose) phosphorylase. Kuhaudomlarp S; Stevenson CEM; Lawson DM; Field RA Proteins; 2019 Oct; 87(10):885-892. PubMed ID: 31134667 [TBL] [Abstract][Full Text] [Related]
10. Structural insights into the difference in substrate recognition of two mannoside phosphorylases from two GH130 subfamilies. Ye Y; Saburi W; Odaka R; Kato K; Sakurai N; Komoda K; Nishimoto M; Kitaoka M; Mori H; Yao M FEBS Lett; 2016 Mar; 590(6):828-37. PubMed ID: 26913570 [TBL] [Abstract][Full Text] [Related]
11. Aromatic interactions at the catalytic subsite of sucrose phosphorylase: their roles in enzymatic glucosyl transfer probed with Phe52→Ala and Phe52→Asn mutants. Wildberger P; Luley-Goedl C; Nidetzky B FEBS Lett; 2011 Feb; 585(3):499-504. PubMed ID: 21219904 [TBL] [Abstract][Full Text] [Related]
12. Structure of a bacterial glycoside hydrolase family 63 enzyme in complex with its glycosynthase product, and insights into the substrate specificity. Miyazaki T; Ichikawa M; Yokoi G; Kitaoka M; Mori H; Kitano Y; Nishikawa A; Tonozuka T FEBS J; 2013 Sep; 280(18):4560-71. PubMed ID: 23826932 [TBL] [Abstract][Full Text] [Related]
13. Kinetic and structural evaluation of selected active site mutants of the Aspergillus fumigatus KDNase (sialidase). Yeung JH; Telford JC; Shidmoossavee FS; Bennet AJ; Taylor GL; Moore MM Biochemistry; 2013 Dec; 52(51):9177-86. PubMed ID: 24295366 [TBL] [Abstract][Full Text] [Related]
14. Trehalose synthase of Mycobacterium smegmatis: purification, cloning, expression, and properties of the enzyme. Pan YT; Koroth Edavana V; Jourdian WJ; Edmondson R; Carroll JD; Pastuszak I; Elbein AD Eur J Biochem; 2004 Nov; 271(21):4259-69. PubMed ID: 15511231 [TBL] [Abstract][Full Text] [Related]
15. The loop structure of Actinomycete glycoside hydrolase family 5 mannanases governs substrate recognition. Kumagai Y; Yamashita K; Tagami T; Uraji M; Wan K; Okuyama M; Yao M; Kimura A; Hatanaka T FEBS J; 2015 Oct; 282(20):4001-14. PubMed ID: 26257335 [TBL] [Abstract][Full Text] [Related]
16. Structural insights into the substrate specificity and function of Escherichia coli K12 YgjK, a glucosidase belonging to the glycoside hydrolase family 63. Kurakata Y; Uechi A; Yoshida H; Kamitori S; Sakano Y; Nishikawa A; Tonozuka T J Mol Biol; 2008 Aug; 381(1):116-28. PubMed ID: 18586271 [TBL] [Abstract][Full Text] [Related]
17. Structural insights on the new mechanism of trehalose synthesis by trehalose synthase TreT from Pyrococcus horikoshii. Woo EJ; Ryu SI; Song HN; Jung TY; Yeon SM; Lee HA; Park BC; Park KH; Lee SB J Mol Biol; 2010 Nov; 404(2):247-59. PubMed ID: 20888836 [TBL] [Abstract][Full Text] [Related]
18. Crystallographic and mutational analyses of substrate recognition of endo-alpha-N-acetylgalactosaminidase from Bifidobacterium longum. Suzuki R; Katayama T; Kitaoka M; Kumagai H; Wakagi T; Shoun H; Ashida H; Yamamoto K; Fushinobu S J Biochem; 2009 Sep; 146(3):389-98. PubMed ID: 19502354 [TBL] [Abstract][Full Text] [Related]
19. Mutational analysis of the oligosaccharide recognition site at the active site of Escherichia coli maltodextrin phosphorylase. Drueckes P; Boeck B; Palm D; Schinzel R Biochemistry; 1996 May; 35(21):6727-34. PubMed ID: 8639623 [TBL] [Abstract][Full Text] [Related]
20. Characterization of Ruminococcus albus cellodextrin phosphorylase and identification of a key phenylalanine residue for acceptor specificity and affinity to the phosphate group. Sawano T; Saburi W; Hamura K; Matsui H; Mori H FEBS J; 2013 Sep; 280(18):4463-73. PubMed ID: 23802549 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]