BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 24256278)

  • 1. Checkpoint regulation of replication forks: global or local?
    Iyer DR; Rhind N
    Biochem Soc Trans; 2013 Dec; 41(6):1701-5. PubMed ID: 24256278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orchestration of the S-phase and DNA damage checkpoint pathways by replication forks from early origins.
    Caldwell JM; Chen Y; Schollaert KL; Theis JF; Babcock GF; Newlon CS; Sanchez Y
    J Cell Biol; 2008 Mar; 180(6):1073-86. PubMed ID: 18347065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Replication fork slowing and stalling are distinct, checkpoint-independent consequences of replicating damaged DNA.
    Iyer DR; Rhind N
    PLoS Genet; 2017 Aug; 13(8):e1006958. PubMed ID: 28806726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A DNA replication fork-centric view of the budding yeast DNA damage response.
    McClure AW; Canal B; Diffley JFX
    DNA Repair (Amst); 2022 Nov; 119():103393. PubMed ID: 36108423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling DNA replication origins in response to DNA damage - inhibit globally, activate locally.
    Yekezare M; Gómez-González B; Diffley JF
    J Cell Sci; 2013 Mar; 126(Pt 6):1297-306. PubMed ID: 23645160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of spindle extension through the yeast S phase checkpoint is coupled to replication fork stability and the integrity of centromeric DNA.
    Julius J; Peng J; McCulley A; Caridi C; Arnak R; See C; Nugent CI; Feng W; Bachant J
    Mol Biol Cell; 2019 Oct; 30(22):2771-2789. PubMed ID: 31509480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic Evidence for Roles of Yeast Mitotic Cyclins at Single-Stranded Gaps Created by DNA Replication.
    Signon L
    G3 (Bethesda); 2018 Feb; 8(2):737-752. PubMed ID: 29279302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The level of origin firing inversely affects the rate of replication fork progression.
    Zhong Y; Nellimoottil T; Peace JM; Knott SR; Villwock SK; Yee JM; Jancuska JM; Rege S; Tecklenburg M; Sclafani RA; Tavaré S; Aparicio OM
    J Cell Biol; 2013 Apr; 201(3):373-83. PubMed ID: 23629964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATR checkpoint kinase and CRL1βTRCP collaborate to degrade ASF1a and thus repress genes overlapping with clusters of stalled replication forks.
    Im JS; Keaton M; Lee KY; Kumar P; Park J; Dutta A
    Genes Dev; 2014 Apr; 28(8):875-87. PubMed ID: 24700029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gap-filling and bypass at the replication fork are both active mechanisms for tolerance of low-dose ultraviolet-induced DNA damage in the human genome.
    Quinet A; Vessoni AT; Rocha CR; Gottifredi V; Biard D; Sarasin A; Menck CF; Stary A
    DNA Repair (Amst); 2014 Feb; 14():27-38. PubMed ID: 24380689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. S-phase checkpoint regulations that preserve replication and chromosome integrity upon dNTP depletion.
    Giannattasio M; Branzei D
    Cell Mol Life Sci; 2017 Jul; 74(13):2361-2380. PubMed ID: 28220209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Replication fork stalling by bulky DNA damage: localization at active origins and checkpoint modulation.
    Minca EC; Kowalski D
    Nucleic Acids Res; 2011 Apr; 39(7):2610-23. PubMed ID: 21138968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cleavage of stalled forks by fission yeast Mus81/Eme1 in absence of DNA replication checkpoint.
    Froget B; Blaisonneau J; Lambert S; Baldacci G
    Mol Biol Cell; 2008 Feb; 19(2):445-56. PubMed ID: 18032583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple roles of replication forks in S phase checkpoints: sensors, effectors and targets.
    Pasero P; Shimada K; Duncker BP
    Cell Cycle; 2003; 2(6):568-72. PubMed ID: 14512770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ORC and the intra-S-phase checkpoint: a threshold regulates Rad53p activation in S phase.
    Shimada K; Pasero P; Gasser SM
    Genes Dev; 2002 Dec; 16(24):3236-52. PubMed ID: 12502744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple pathways cooperate to facilitate DNA replication fork progression through alkylated DNA.
    Vázquez MV; Rojas V; Tercero JA
    DNA Repair (Amst); 2008 Oct; 7(10):1693-704. PubMed ID: 18640290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Checkpoint-mediated control of replisome-fork association and signalling in response to replication pausing.
    Lucca C; Vanoli F; Cotta-Ramusino C; Pellicioli A; Liberi G; Haber J; Foiani M
    Oncogene; 2004 Feb; 23(6):1206-13. PubMed ID: 14647447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Intra-S Checkpoint Responses to DNA Damage.
    Iyer DR; Rhind N
    Genes (Basel); 2017 Feb; 8(2):. PubMed ID: 28218681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal separation of replication and recombination requires the intra-S checkpoint.
    Meister P; Taddei A; Vernis L; Poidevin M; Gasser SM; Baldacci G
    J Cell Biol; 2005 Feb; 168(4):537-44. PubMed ID: 15716375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A tough row to hoe: when replication forks encounter DNA damage.
    Patel DR; Weiss RS
    Biochem Soc Trans; 2018 Dec; 46(6):1643-1651. PubMed ID: 30514768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.