BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 24256402)

  • 1. Conserved roles for Polycomb Repressive Complex 2 in the regulation of lateral organ development in Aquilegia x coerulea 'Origami'.
    Gleason EJ; Kramer EM
    BMC Plant Biol; 2013 Nov; 13():185. PubMed ID: 24256402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Aquilegia Polycomb Repressive Complex 2 homologs reveals absence of imprinting.
    Gleason EJ; Kramer EM
    Gene; 2012 Oct; 507(1):54-60. PubMed ID: 22796128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Aquilegia FRUITFULL-like genes play key roles in leaf morphogenesis and inflorescence development.
    Pabón-Mora N; Sharma B; Holappa LD; Kramer EM; Litt A
    Plant J; 2013 Apr; 74(2):197-212. PubMed ID: 23294330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative transcriptomics of early petal development across four diverse species of Aquilegia reveal few genes consistently associated with nectar spur development.
    Ballerini ES; Kramer EM; Hodges SA
    BMC Genomics; 2019 Aug; 20(1):668. PubMed ID: 31438840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Petal-specific subfunctionalization of an APETALA3 paralog in the Ranunculales and its implications for petal evolution.
    Sharma B; Guo C; Kong H; Kramer EM
    New Phytol; 2011 Aug; 191(3):870-883. PubMed ID: 21557746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kicking against the PRCs - A Domesticated Transposase Antagonises Silencing Mediated by Polycomb Group Proteins and Is an Accessory Component of Polycomb Repressive Complex 2.
    Liang SC; Hartwig B; Perera P; Mora-García S; de Leau E; Thornton H; de Lima Alves F; Rappsilber J; Yang S; James GV; Schneeberger K; Finnegan EJ; Turck F; Goodrich J
    PLoS Genet; 2015 Dec; 11(12):e1005660. PubMed ID: 26642436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sub- and neo-functionalization of APETALA3 paralogs have contributed to the evolution of novel floral organ identity in Aquilegia (columbine, Ranunculaceae).
    Sharma B; Kramer E
    New Phytol; 2013 Feb; 197(3):949-957. PubMed ID: 23278258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elaboration of B gene function to include the identity of novel floral organs in the lower eudicot Aquilegia.
    Kramer EM; Holappa L; Gould B; Jaramillo MA; Setnikov D; Santiago PM
    Plant Cell; 2007 Mar; 19(3):750-66. PubMed ID: 17400892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Aquilegia JAGGED homolog promotes proliferation of adaxial cell types in both leaves and stems.
    Min Y; Kramer EM
    New Phytol; 2017 Oct; 216(2):536-548. PubMed ID: 27864962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of the target genes of AqAPETALA3-3 (AqAP3-3) in Aquilegia coerulea (Ranunculaceae) helps understand the molecular bases of the conserved and nonconserved features of petals.
    Jiang Y; Wang M; Zhang R; Xie J; Duan X; Shan H; Xu G; Kong H
    New Phytol; 2020 Aug; 227(4):1235-1248. PubMed ID: 32285943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partial redundancy and functional specialization of E-class SEPALLATA genes in an early-diverging eudicot.
    Soza VL; Snelson CD; Hewett Hazelton KD; Di Stilio VS
    Dev Biol; 2016 Nov; 419(1):143-155. PubMed ID: 27502434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FERTILIZATION-INDEPENDENT SEED-Polycomb Repressive Complex 2 Plays a Dual Role in Regulating Type I MADS-Box Genes in Early Endosperm Development.
    Zhang S; Wang D; Zhang H; Skaggs MI; Lloyd A; Ran D; An L; Schumaker KS; Drews GN; Yadegari R
    Plant Physiol; 2018 May; 177(1):285-299. PubMed ID: 29523711
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Sharma B; Kramer EM
    Evodevo; 2017; 8():22. PubMed ID: 29209492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conservation and diversification of polycomb repressive complex 2 (PRC2) proteins in the green lineage.
    Huang Y; Chen DH; Liu BY; Shen WH; Ruan Y
    Brief Funct Genomics; 2017 Mar; 16(2):106-119. PubMed ID: 27032420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome profiling and weighted gene co-expression network analysis of early floral development in Aquilegia coerulea.
    Min Y; Kramer EM
    Sci Rep; 2020 Nov; 10(1):19637. PubMed ID: 33184405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Virus-induced gene silencing in the rapid cycling columbine Aquilegia coerulea "Origami".
    Sharma B; Kramer EM
    Methods Mol Biol; 2013; 975():71-81. PubMed ID: 23386296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct accessory roles of
    Franco-Echevarría E; Nielsen M; Schulten A; Cheema J; Morgan TE; Bienz M; Dean C
    Genes Dev; 2023 Sep; 37(17-18):801-817. PubMed ID: 37734835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower.
    Kaufmann K; Muiño JM; Jauregui R; Airoldi CA; Smaczniak C; Krajewski P; Angenent GC
    PLoS Biol; 2009 Apr; 7(4):e1000090. PubMed ID: 19385720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A soybean MADS-box protein modulates floral organ numbers, petal identity and sterility.
    Huang F; Xu G; Chi Y; Liu H; Xue Q; Zhao T; Gai J; Yu D
    BMC Plant Biol; 2014 Apr; 14():89. PubMed ID: 24693922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional and evolutionary analysis of the AP1/SEP/AGL6 superclade of MADS-box genes in the basal eudicot Epimedium sagittatum.
    Sun W; Huang W; Li Z; Song C; Liu D; Liu Y; Hayward A; Liu Y; Huang H; Wang Y
    Ann Bot; 2014 Mar; 113(4):653-68. PubMed ID: 24532606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.