These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 24256424)

  • 21. Viscoelastic behavior and in vivo release study of microgel dispersions with inverse thermoreversible gelation.
    Zhou J; Wang G; Zou L; Tang L; Marquez M; Hu Z
    Biomacromolecules; 2008 Jan; 9(1):142-8. PubMed ID: 18067257
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro transdermal and biological evaluation of ALA-loaded poly(N-isopropylacrylamide) and poly(N-isopropylacrylamide-co-acrylic acid) microgels for photodynamic therapy.
    Gómez C; Benito M; Katime I; Teijón JM; Blanco MD
    J Microencapsul; 2012; 29(7):626-35. PubMed ID: 22494064
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Behavior of temperature-responsive copolymer microgels at the oil/water interface.
    Wu Y; Wiese S; Balaceanu A; Richtering W; Pich A
    Langmuir; 2014 Jul; 30(26):7660-9. PubMed ID: 24926817
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microgel-based etalon coated quartz crystal microbalances for detecting solution pH: The effect of Au overlayer thickness.
    Islam MR; Johnson KC; Serpe MJ
    Anal Chim Acta; 2013 Aug; 792():110-4. PubMed ID: 23910975
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detecting solution pH changes using poly (N-isopropylacrylamide)-co-acrylic acid microgel-based etalon modified quartz crystal microbalances.
    Johnson KC; Mendez F; Serpe MJ
    Anal Chim Acta; 2012 Aug; 739():83-8. PubMed ID: 22819053
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction of nonionic surfactants with copolymer microgel particles of NIPAM and acrylic acid.
    Bradley M; Vincent B
    Langmuir; 2005 Sep; 21(19):8630-4. PubMed ID: 16142940
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adsorption of Lead Ions onto N -Isopropylacrylamide and Acrylic Acid Copolymer Microgels.
    Morris GE; Vincent B; Snowden MJ
    J Colloid Interface Sci; 1997 Jun; 190(1):198-205. PubMed ID: 9241156
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The influence of deposition solution pH and ionic strength on the quality of poly(N-isopropylacrylamide) microgel-based thin films and etalons.
    Hu L; Serpe MJ
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11977-83. PubMed ID: 24191757
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermal Behaviour of Microgels Composed of Interpenetrating Polymer Networks of Poly(
    Franco S; Buratti E; Nigro V; Bertoldo M; Ruzicka B; Angelini R
    Polymers (Basel); 2021 Dec; 14(1):. PubMed ID: 35012137
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polymer dynamics in responsive microgels: influence of cononsolvency and microgel architecture.
    Scherzinger C; Holderer O; Richter D; Richtering W
    Phys Chem Chem Phys; 2012 Feb; 14(8):2762-8. PubMed ID: 22252036
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemical-Physical Behaviour of Microgels Made of Interpenetrating Polymer Networks of PNIPAM and Poly(acrylic Acid).
    Nigro V; Angelini R; Bertoldo M; Buratti E; Franco S; Ruzicka B
    Polymers (Basel); 2021 Apr; 13(9):. PubMed ID: 33919087
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Motion of microgels in electric fields.
    Liétor-Santos JJ; Fernández-Nieves A
    Adv Colloid Interface Sci; 2009; 147-148():178-85. PubMed ID: 18790469
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Responsive hydrogels with poly(N-isopropylacrylamide-co-acrylic acid) colloidal spheres as building blocks.
    Xia LW; Ju XJ; Liu JJ; Xie R; Chu LY
    J Colloid Interface Sci; 2010 Sep; 349(1):106-13. PubMed ID: 20609844
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dependence of Temperature-Sensitivity of Poly(N-isopropylacrylamide-co-acrylic acid) Hydrogel Microspheres upon Their Sizes.
    Makino K; Agata H; Ohshima H
    J Colloid Interface Sci; 2000 Oct; 230(1):128-134. PubMed ID: 10998296
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Study of pH-responsive microgels containing methacrylic acid: effects of particle composition and added calcium.
    Dalmont H; Pinprayoon O; Saunders BR
    Langmuir; 2008 Mar; 24(6):2834-40. PubMed ID: 18290684
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of layer-by-layer confinement of polypeptides and polysaccharides onto thermoresponsive microgels: a comparative study.
    Díez-Pascual AM; Wong JE
    J Colloid Interface Sci; 2010 Jul; 347(1):79-89. PubMed ID: 20385389
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation and Characterization of Novel Microgels Containing Nano-SiO
    Sorkhabi TS; Samberan MF; Ostrowski KA; Majka TM; Piechaczek M; Zajdel P
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888249
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Swelling-shrinking behavior of a polyampholyte gel composed of positively charged networks with immobilized polyanions.
    Ogawa Y; Ogawa K; Kokufuta E
    Langmuir; 2004 Mar; 20(7):2546-52. PubMed ID: 15835122
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tunable swelling and rolling of microgel membranes.
    Zhang L; Spears MW; Lyon LA
    Langmuir; 2014 Jul; 30(26):7628-34. PubMed ID: 24927510
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inducing pH responsiveness via ultralow thiol content in polyacrylamide (micro)gels with labile crosslinks.
    Bajomo M; Steinke JH; Bismarck A
    J Phys Chem B; 2007 Jul; 111(29):8655-62. PubMed ID: 17550282
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.