BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 2425658)

  • 1. Peptide sequence analysis using exopeptidases with molecular analysis of the truncated polypeptides by mass spectrometry.
    Caprioli RM; Fan T
    Anal Biochem; 1986 May; 154(2):596-603. PubMed ID: 2425658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of carboxypeptidase Y and fast atom bombardment mass spectrometry for C-terminal sequencing of small peptides.
    Kim J; Kim K; Kim J; Ok JH; Kim J
    Biochem Mol Biol Int; 1994 May; 33(1):55-64. PubMed ID: 8081213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of immobilized exopeptidases and volatile buffers for analysis of peptides by fast atom bombardment mass spectrometry.
    Wagner RM; Fraser BA
    Biomed Environ Mass Spectrom; 1987 May; 14(5):235-9. PubMed ID: 2886163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of the C-terminal amino acid amides by carboxypeptidase Y digestion and fast atom bombardment mass spectrometry.
    Kim J; Kim K
    Biochem Mol Biol Int; 1994 Nov; 34(5):897-907. PubMed ID: 7703906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptide sequencing using the combination of edman degradation, carboxypeptidase digestion and fast atom bombardment mass spectrometry.
    Bradley CV; Williams DH; Hanley MR
    Biochem Biophys Res Commun; 1982 Feb; 104(4):1223-30. PubMed ID: 6176241
    [No Abstract]   [Full Text] [Related]  

  • 6. MALDI-MS for C-terminal sequence determination of peptides and proteins degraded by carboxypeptidase Y and P.
    Thiede B; Wittmann-Liebold B; Bienert M; Krause E
    FEBS Lett; 1995 Jan; 357(1):65-9. PubMed ID: 8001681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast protein sequence determination with matrix-assisted laser desorption and ionization mass spectrometry.
    Schär M; Börnsen KO; Gassmann E
    Rapid Commun Mass Spectrom; 1991 Jul; 5(7):319-26. PubMed ID: 1841651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The hydrolysis of diastereoisomers of alanine peptides by carboxypeptidase A and leucine aminopeptidase.
    Schechter I; Berger A
    Biochemistry; 1966 Oct; 5(10):3371-5. PubMed ID: 5971844
    [No Abstract]   [Full Text] [Related]  

  • 9. Peptide sequencing by using a combination of partial acid hydrolysis and fast-atom-bombardment mass spectrometry.
    De Angelis F; Botta M; Ceccarelli S; Nicoletti R
    Biochem J; 1986 Jun; 236(2):609-12. PubMed ID: 2428356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. C-terminal sequence determination of peptides degraded with carboxypeptidases of different specificities and analyzed by 252-Cf plasma desorption mass spectrometry.
    Klarskov I; Breddam K; Roepstorff P
    Anal Biochem; 1989 Jul; 180(1):28-37. PubMed ID: 2683858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of fast-atom bombardment mass spectrometry for sequencing of a hemoglobin fragment, naturally occurring in human cerebrospinal fluid.
    Glämsta EL; Nyberg F; Silberring J
    Rapid Commun Mass Spectrom; 1992 Dec; 6(12):777-80. PubMed ID: 1286209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Minimum requirements for protease activation of flavin pyruvate oxidase.
    Bertagnolli BL; Hager LP
    Biochemistry; 1991 Aug; 30(33):8131-7. PubMed ID: 1868088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ON THE STRUCTURE OF ALPHA-LACTALBUMIN. II. AMINO ACID SEQUENCES OF FOUR PEPTIDES FORMED IN THE PEPTIC HYDROLYSIS OF THE NATIVE PROTEIN.
    WEIL L; SEIBLES TS
    Arch Biochem Biophys; 1964 Jun; 105():457-64. PubMed ID: 14236627
    [No Abstract]   [Full Text] [Related]  

  • 14. Fast atom bombardment mass spectrometry and selective acid hydrolysis for the analysis of partially modified retro-inverso peptide analogues.
    De Angelis F; Ceccarelli S; Viscomi GC; Pinori M; Verdini AS
    Biomed Environ Mass Spectrom; 1989 Oct; 18(10):867-71. PubMed ID: 2804434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Narrow-bore high-performance liquid chromatography of phenylthiocarbamyl amino acids and carboxypeptidase P digestion for protein C-terminal sequence analysis.
    Lu HS; Klein ML; Lai PH
    J Chromatogr; 1988 Aug; 447(2):351-64. PubMed ID: 3225285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic digestibility of peptides cross-linked by ionizing radiation.
    Dizdaroglu M; Gajewski E; Simic MG
    Int J Radiat Biol Relat Stud Phys Chem Med; 1984 Mar; 45(3):283-95. PubMed ID: 6143737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct monitoring of sequential enzymatic hydrolysis of peptides by thermospray mass spectrometry.
    Pilosof D; Kim HY; Vestal ML; Dyckes DF
    Biomed Mass Spectrom; 1984 Aug; 11(8):403-7. PubMed ID: 6478047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient algorithm for sequencing peptides using fast atom bombardment mass spectral data.
    Siegel MM; Bauman N
    Biomed Environ Mass Spectrom; 1988 Mar; 15(6):333-43. PubMed ID: 2967723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide fingerprints after partial acid hydrolysis: analysis by matrix-assisted laser desorption/ionization mass spectrometry.
    Knierman MD; Coligan JE; Parker KC
    Rapid Commun Mass Spectrom; 1994 Dec; 8(12):1007-10. PubMed ID: 7696698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-terminal sequence determination of polypeptides and peptide mixtures by Edman degradation combined with californium-252 plasma desorption mass spectrometry.
    Nielsen PF; Landis B; Svoboda M; Schneider K; Przybylski M
    Anal Biochem; 1990 Dec; 191(2):302-8. PubMed ID: 2085176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.