These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 24256819)

  • 1. Tuning fluidic resistance via liquid crystal microfluidics.
    Sengupta A
    Int J Mol Sci; 2013 Nov; 14(11):22826-44. PubMed ID: 24256819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liquid crystal microfluidics for tunable flow shaping.
    Sengupta A; Tkalec U; Ravnik M; Yeomans JM; Bahr C; Herminghaus S
    Phys Rev Lett; 2013 Jan; 110(4):048303. PubMed ID: 25166209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of arbitrary monotonic concentration profiles by a serial dilution microfluidic network composed of microchannels with a high fluidic-resistance ratio.
    Hattori K; Sugiura S; Kanamori T
    Lab Chip; 2009 Jun; 9(12):1763-72. PubMed ID: 19495461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nematic director reorientation at solid and liquid interfaces under flow: SAXS studies in a microfluidic device.
    Silva BF; Zepeda-Rosales M; Venkateswaran N; Fletcher BJ; Carter LG; Matsui T; Weiss TM; Han J; Li Y; Olsson U; Safinya CR
    Langmuir; 2015 Apr; 31(14):4361-71. PubMed ID: 25396748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anisotropic, porous hydrogels templated by lyotropic chromonic liquid crystals.
    Wang S; Maruri DP; Boothby JM; Lu X; Rivera-Tarazona LK; Varner VD; Ware TH
    J Mater Chem B; 2020 Aug; 8(31):6988-6998. PubMed ID: 32626869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications.
    Liu Q; Cui Y; Gardner D; Li X; He S; Smalyukh II
    Nano Lett; 2010 Apr; 10(4):1347-53. PubMed ID: 20334353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwrinkles: shape-tunability and applications.
    Ohzono T; Monobe H
    J Colloid Interface Sci; 2012 Feb; 368(1):1-8. PubMed ID: 22196350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liquid crystal dynamics in a photonic crystal cavity created by selective microfluidic infiltration.
    Casas Bedoya A; Mahmoodian S; Monat C; Tomljenovic-Hanic S; Grillet C; Domachuk P; Mägi EC; Eggleton BJ; van der Heijden RW
    Opt Express; 2010 Dec; 18(26):27280-90. PubMed ID: 21197006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inner Surface Design of Functional Microchannels for Microscale Flow Control.
    Wang S; Yang X; Wu F; Min L; Chen X; Hou X
    Small; 2020 Mar; 16(9):e1905318. PubMed ID: 31793747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-organizing microfluidic crystals.
    Uspal WE; Doyle PS
    Soft Matter; 2014 Jul; 10(28):5177-91. PubMed ID: 24913768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Terraced and 3D Pyramid-Shaped Polymer Single Crystal via Low Temperature-Assisted Microfluidic Technology.
    Li S; Li Z; Wang X; Zhan P; Gui X; Hu J; Lin S; Tu Y
    Macromol Rapid Commun; 2022 Mar; 43(5):e2100747. PubMed ID: 34967476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembly via branching morphologies in nematic liquid-crystal nanocomposites.
    Gurevich S; Soule E; Rey A; Reven L; Provatas N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):020501. PubMed ID: 25215674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterning-induced surface chirality and modulation of director twist in a nematic cell.
    Choi Y; Atherton T; Ferjani S; Petschek RG; Rosenblatt C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):060701. PubMed ID: 20365110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liquid crystal phase behaviour of attractive disc-like particles.
    Wu L; Jackson G; Müller EA
    Int J Mol Sci; 2013 Aug; 14(8):16414-42. PubMed ID: 23965962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional surface microfluidics enabled by spatiotemporal control of elastic fluidic interface.
    Hong L; Pan T
    Lab Chip; 2010 Dec; 10(23):3271-6. PubMed ID: 20931123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assembling Microtubule-Based Active Matter.
    Tayar AM; Lemma LM; Dogic Z
    Methods Mol Biol; 2022; 2430():151-183. PubMed ID: 35476331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using liquid crystals to reveal how mechanical anisotropy changes interfacial behaviors of motile bacteria.
    Mushenheim PC; Trivedi RR; Weibel DB; Abbott NL
    Biophys J; 2014 Jul; 107(1):255-65. PubMed ID: 24988359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal-Responsive Anisotropic Wetting Microstructures for Manipulation of Fluids in Microfluidics.
    Yu N; Wang S; Liu Y; Xue P; Ge P; Nan J; Ye S; Liu W; Zhang J; Yang B
    Langmuir; 2017 Jan; 33(2):494-502. PubMed ID: 27998059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D microlasers from self-assembled cholesteric liquid-crystal microdroplets.
    Humar M; Musevic I
    Opt Express; 2010 Dec; 18(26):26995-7003. PubMed ID: 21196976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optofluidic-tunable color filters and spectroscopy based on liquid-crystal microflows.
    Cuennet JG; Vasdekis AE; Psaltis D
    Lab Chip; 2013 Jul; 13(14):2721-6. PubMed ID: 23752198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.