BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 24256843)

  • 1. Improved workflows for high throughput library preparation using the transposome-based Nextera system.
    Lamble S; Batty E; Attar M; Buck D; Bowden R; Lunter G; Crook D; El-Fahmawi B; Piazza P
    BMC Biotechnol; 2013 Nov; 13():104. PubMed ID: 24256843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hackflex: low-cost, high-throughput, Illumina Nextera Flex library construction.
    Gaio D; Anantanawat K; To J; Liu M; Monahan L; Darling AE
    Microb Genom; 2022 Jan; 8(1):. PubMed ID: 35014949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bead-linked transposomes enable a normalization-free workflow for NGS library preparation.
    Bruinsma S; Burgess J; Schlingman D; Czyz A; Morrell N; Ballenger C; Meinholz H; Brady L; Khanna A; Freeberg L; Jackson RG; Mathonet P; Verity SC; Slatter AF; Golshani R; Grunenwald H; Schroth GP; Gormley NA
    BMC Genomics; 2018 Oct; 19(1):722. PubMed ID: 30285621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of a transposase protocol for rapid generation of shotgun high-throughput sequencing libraries from nanogram quantities of DNA.
    Marine R; Polson SW; Ravel J; Hatfull G; Russell D; Sullivan M; Syed F; Dumas M; Wommack KE
    Appl Environ Microbiol; 2011 Nov; 77(22):8071-9. PubMed ID: 21948828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Multiplexed, Semiautomated Nextera Next-Generation Sequencing (NGS) Library Preparation.
    Christie W; Yadin R; Ip K; George KW
    Methods Mol Biol; 2020; 2205():91-104. PubMed ID: 32809195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cost-conscious generation of multiplexed short-read DNA libraries for whole-genome sequencing.
    Jones A; Stanley D; Ferguson S; Schwessinger B; Borevitz J; Warthmann N
    PLoS One; 2023; 18(1):e0280004. PubMed ID: 36706059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inexpensive multiplexed library preparation for megabase-sized genomes.
    Baym M; Kryazhimskiy S; Lieberman TD; Chung H; Desai MM; Kishony R
    PLoS One; 2015; 10(5):e0128036. PubMed ID: 26000737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-Cost, High-Throughput Sequencing of DNA Assemblies Using a Highly Multiplexed Nextera Process.
    Shapland EB; Holmes V; Reeves CD; Sorokin E; Durot M; Platt D; Allen C; Dean J; Serber Z; Newman J; Chandran S
    ACS Synth Biol; 2015 Jul; 4(7):860-6. PubMed ID: 25913499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A performance evaluation of Nextera XT and KAPA HyperPlus for rapid Illumina library preparation of long-range mitogenome amplicons.
    Ring JD; Sturk-Andreaggi K; Peck MA; Marshall C
    Forensic Sci Int Genet; 2017 Jul; 29():174-180. PubMed ID: 28448897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel ultra high-throughput 16S rRNA gene amplicon sequencing library preparation method for the Illumina HiSeq platform.
    de Muinck EJ; Trosvik P; Gilfillan GD; Hov JR; Sundaram AYM
    Microbiome; 2017 Jul; 5(1):68. PubMed ID: 28683838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of enzymatic fragmentation is crucial to maximize genome coverage: a comparison of library preparation methods for Illumina sequencing.
    Ribarska T; Bjørnstad PM; Sundaram AYM; Gilfillan GD
    BMC Genomics; 2022 Feb; 23(1):92. PubMed ID: 35105301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization and cost-saving in tagmentation-based mate-pair library preparation and sequencing.
    Tatsumi K; Nishimura O; Itomi K; Tanegashima C; Kuraku S
    Biotechniques; 2015 May; 58(5):253-7. PubMed ID: 25967904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A cost-effective method for high-throughput construction of illumina sequencing libraries.
    Dunham JP; Friesen ML
    Cold Spring Harb Protoc; 2013 Sep; 2013(9):820-34. PubMed ID: 24003196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput Minitaturized RNA-Seq Library Preparation.
    Mildrum S; Hendricks A; Stortchevoi A; Kamelamela N; Butty VL; Levine SS
    J Biomol Tech; 2020 Dec; 31(4):151-156. PubMed ID: 33100919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of a high-throughput, cost-effective Illumina library preparation kit.
    Tvedte ES; Michalski J; Cheng S; Patkus RS; Tallon LJ; Sadzewicz L; Bruno VM; Silva JC; Rasko DA; Dunning Hotopp JC
    Sci Rep; 2021 Aug; 11(1):15925. PubMed ID: 34354114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved genome sequencing using an engineered transposase.
    Kia A; Gloeckner C; Osothprarop T; Gormley N; Bomati E; Stephenson M; Goryshin I; He MM
    BMC Biotechnol; 2017 Jan; 17(1):6. PubMed ID: 28095828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Technical considerations for cost-effective transposon directed insertion-site sequencing (TraDIS).
    Kyono Y; Tolwinski M; Flowers SA
    Sci Rep; 2024 Mar; 14(1):6756. PubMed ID: 38514891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Next-generation sequencing library construction on a surface.
    Feng K; Costa J; Edwards JS
    BMC Genomics; 2018 May; 19(1):416. PubMed ID: 29848309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Microfluidics Workflow for Sample Preparation for Next-Generation DNA Sequencing.
    Snider A; Nilsson M; Dupal M; Toloue M; Tripathi A
    SLAS Technol; 2019 Apr; 24(2):196-208. PubMed ID: 30142015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the sequencing bias of currently available library preparation kits for Illumina sequencing of bacterial genomes and metagenomes.
    Sato MP; Ogura Y; Nakamura K; Nishida R; Gotoh Y; Hayashi M; Hisatsune J; Sugai M; Takehiko I; Hayashi T
    DNA Res; 2019 Oct; 26(5):391-398. PubMed ID: 31364694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.