These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
47. Magnesium Ions Moderate Calcium-Induced Calcium Release in Cardiac Calcium Release Sites by Binding to Ryanodine Receptor Activation and Inhibition Sites. Iaparov B; Baglaeva I; Zahradník I; Zahradníková A Front Physiol; 2021; 12():805956. PubMed ID: 35145426 [TBL] [Abstract][Full Text] [Related]
48. The role of action potential changes in depolarization-induced failure of excitation contraction coupling in mouse skeletal muscle. Wang X; Nawaz M; DuPont C; Myers JH; Burke SR; Bannister RA; Foy BD; Voss AA; Rich MM Elife; 2022 Jan; 11():. PubMed ID: 34985413 [TBL] [Abstract][Full Text] [Related]
49. Spatiotemporal regulation of store-operated calcium entry in cancer metastasis. Lu F; Li Y; Lin S; Cheng H; Yang S Biochem Soc Trans; 2021 Dec; 49(6):2581-2589. PubMed ID: 34854917 [TBL] [Abstract][Full Text] [Related]
51. Increased Reactive Oxygen Species-Mediated Ca Liu X; Wang S; Guo X; Li Y; Ogurlu R; Lu F; Prondzynski M; de la Serna Buzon S; Ma Q; Zhang D; Wang G; Cotton J; Guo Y; Xiao L; Milan DJ; Xu Y; Schlame M; Bezzerides VJ; Pu WT Circulation; 2021 May; 143(19):1894-1911. PubMed ID: 33793303 [TBL] [Abstract][Full Text] [Related]
52. In silico simulations reveal that RYR distribution affects the dynamics of calcium release in cardiac myocytes. Iaparov BI; Zahradnik I; Moskvin AS; Zahradníková A J Gen Physiol; 2021 Apr; 153(4):. PubMed ID: 33735373 [TBL] [Abstract][Full Text] [Related]
53. Detection of Ca2+ transients near ryanodine receptors by targeting fluorescent Ca2+ sensors to the triad. Sanchez C; Berthier C; Tourneur Y; Monteiro L; Allard B; Csernoch L; Jacquemond V J Gen Physiol; 2021 Apr; 153(4):. PubMed ID: 33538764 [TBL] [Abstract][Full Text] [Related]
54. Signaling Microdomains in the Spotlight: Visualizing Compartmentalized Signaling Using Genetically Encoded Fluorescent Biosensors. Zhang JF; Mehta S; Zhang J Annu Rev Pharmacol Toxicol; 2021 Jan; 61():587-608. PubMed ID: 33411579 [TBL] [Abstract][Full Text] [Related]
55. Observing and Manipulating Cell-Specific Cardiac Function with Light. Zgierski-Johnston CM; Schneider-Warme F Adv Exp Med Biol; 2021; 1293():377-388. PubMed ID: 33398827 [TBL] [Abstract][Full Text] [Related]
56. Cardiac optogenetics: a decade of enlightenment. Entcheva E; Kay MW Nat Rev Cardiol; 2021 May; 18(5):349-367. PubMed ID: 33340010 [TBL] [Abstract][Full Text] [Related]
57. The architecture and function of cardiac dyads. Lu F; Pu WT Biophys Rev; 2020 Aug; 12(4):1007-1017. PubMed ID: 32661902 [TBL] [Abstract][Full Text] [Related]
58. Alteration of calcium signalling in cardiomyocyte induced by simulated microgravity and hypergravity. Liu C; Zhong G; Zhou Y; Yang Y; Tan Y; Li Y; Gao X; Sun W; Li J; Jin X; Cao D; Yuan X; Liu Z; Liang S; Li Y; Du R; Zhao Y; Xue J; Zhao D; Song J; Ling S; Li Y Cell Prolif; 2020 Mar; 53(3):e12783. PubMed ID: 32101357 [TBL] [Abstract][Full Text] [Related]
59. Optocardiography: A Review of its Past, Present and Future. George SA; Efimov IR Curr Opin Biomed Eng; 2019 Mar; 9():74-80. PubMed ID: 31803858 [TBL] [Abstract][Full Text] [Related]
60. Principles of Optogenetic Methods and Their Application to Cardiac Experimental Systems. Ferenczi EA; Tan X; Huang CL Front Physiol; 2019; 10():1096. PubMed ID: 31572204 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]