BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 24257505)

  • 1. Effects of some salts on H2O as probed by a thermodynamic signature of glycerol: towards understanding the Hofmeister effects (VII).
    Koga Y; Westh P
    Phys Chem Chem Phys; 2014 Jan; 16(1):335-44. PubMed ID: 24257505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of Na-salts and 1-propanol in 1-propanol-Na-Salt-H2O systems: toward an understanding the Hofmeister series (IV).
    Miki K; Westh P; Koga Y
    J Phys Chem B; 2008 Apr; 112(15):4680-6. PubMed ID: 18361525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 1-Propanol probing methodology: two-dimensional characterization of the effect of solute on H2O.
    Koga Y
    Phys Chem Chem Phys; 2013 Sep; 15(35):14548-65. PubMed ID: 23872671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relative hydrophobicity and hydrophilicity of some "ionic liquid" anions determined by the 1-propanol probing methodology: a differential thermodynamic approach.
    Kato H; Nishikawa K; Koga Y
    J Phys Chem B; 2008 Mar; 112(9):2655-60. PubMed ID: 18254621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward understanding the Hofmeister series. 3. Effects of sodium halides on the molecular organization of H2O as probed by 1-propanol.
    Westh P; Kato H; Nishikawa K; Koga Y
    J Phys Chem A; 2006 Feb; 110(5):2072-8. PubMed ID: 16451045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrophobicity vs hydrophilicity: Effects of poly(ethylene glycol) and tert-butyl alcohol on H2O as probed by 1-propanol.
    Miki K; Westh P; Koga Y
    J Phys Chem B; 2005 Oct; 109(41):19536-41. PubMed ID: 16853524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of ethanol and dimethyl sulfoxide on the molecular organization of H2O as probed by 1-propanol.
    Morita T; Westh P; Nishikawa K; Koga Y
    J Phys Chem B; 2012 Jun; 116(24):7328-33. PubMed ID: 22646094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is a methyl group always hydrophobic? Hydrophilicity of trimethylamine-N-oxide, tetramethyl urea and tetramethylammonium ion.
    Koga Y; Westh P; Nishikawa K; Subramanian S
    J Phys Chem B; 2011 Mar; 115(12):2995-3002. PubMed ID: 21384939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion-specific weak adsorption of salts and water/octanol transfer free energy of a model amphiphilic hexapeptide.
    Déjugnat C; Dufrêche JF; Zemb T
    Phys Chem Chem Phys; 2011 Apr; 13(15):6914-24. PubMed ID: 21412527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the mechanism of the hofmeister effect.
    Gurau MC; Lim SM; Castellana ET; Albertorio F; Kataoka S; Cremer PS
    J Am Chem Soc; 2004 Sep; 126(34):10522-3. PubMed ID: 15327293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of lithium ions on the hydrophobic effect: does lithium affect hydrophobicity differently than other ions?
    Beauchamp DL; Khajehpour M
    Biophys Chem; 2012 Apr; 163-164():35-43. PubMed ID: 22421031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydration patterns and salting effects in sodium chloride solution.
    Li W; Mu Y
    J Chem Phys; 2011 Oct; 135(13):134502. PubMed ID: 21992319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino acid solvation in aqueous kosmotrope solutions: temperature dependence of the L-histidine-glycerol interaction.
    Kustov AV; Smirnova NL; Neueder R; Kunz W
    J Phys Chem B; 2012 Feb; 116(7):2325-9. PubMed ID: 22276619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of H
    Koga Y; Miki K; Nishikawa K
    Phys Chem Chem Phys; 2017 Oct; 19(40):27413-27420. PubMed ID: 28975179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of tetramethyl- and tetraethylammonium chloride on H2O: calorimetric and near-infrared spectroscopic study.
    Koga Y; Sebe F; Nishikawa K
    J Phys Chem B; 2013 Jan; 117(3):877-83. PubMed ID: 23249405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How much weaker are the effects of cations than those of anions? The effects of K+ and Cs+ on the molecular organization of liquid H2O.
    Morita T; Westh P; Nishikawa K; Koga Y
    J Phys Chem B; 2014 Jul; 118(29):8744-9. PubMed ID: 25000451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the Hofmeister effect with ultrafast core-hole spectroscopy.
    Yin Z; Rajkovic I; Kubicek K; Quevedo W; Pietzsch A; Wernet P; Föhlisch A; Techert S
    J Phys Chem B; 2014 Aug; 118(31):9398-403. PubMed ID: 25029209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulations of hydrophobic associations in aqueous salt solutions indicate a connection between water hydrogen bonding and the Hofmeister effect.
    Thomas AS; Elcock AH
    J Am Chem Soc; 2007 Dec; 129(48):14887-98. PubMed ID: 17994735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic studies of ionic hydration and interactions for amino acid ionic liquids in aqueous solutions at 298.15 K.
    Dagade DH; Madkar KR; Shinde SP; Barge SS
    J Phys Chem B; 2013 Jan; 117(4):1031-43. PubMed ID: 23293839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of constituent ions of a phosphonium-based ionic liquid on molecular organization of H2O as probed by 1-propanol: tetrabutylphosphonium and trifluoroacetate ions.
    Morita T; Miki K; Nitta A; Ohgi H; Westh P
    Phys Chem Chem Phys; 2015 Sep; 17(34):22170-8. PubMed ID: 26239281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.