These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 24257506)

  • 21. X-ray physics-based CT-to-composition conversion applied to a tissue engineering scaffold, enabling multiscale simulation of its elastic behavior.
    Szlazak K; Vass V; Hasslinger P; Jaroszewicz J; Dejaco A; Idaszek J; Scheiner S; Hellmich C; Swieszkowski W
    Mater Sci Eng C Mater Biol Appl; 2019 Feb; 95():389-396. PubMed ID: 30573263
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3D interconnected porous biomimetic scaffolds: In vitro cell response.
    Panzavolta S; Torricelli P; Amadori S; Parrilli A; Rubini K; della Bella E; Fini M; Bigi A
    J Biomed Mater Res A; 2013 Dec; 101(12):3560-70. PubMed ID: 23629945
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis.
    Baggi L; Cappelloni I; Di Girolamo M; Maceri F; Vairo G
    J Prosthet Dent; 2008 Dec; 100(6):422-31. PubMed ID: 19033026
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Degradable amorphous scaffolds with enhanced mechanical properties and homogeneous cell distribution produced by a three-dimensional fiber deposition method.
    Sun Y; Finne-Wistrand A; Albertsson AC; Xing Z; Mustafa K; Hendrikson WJ; Grijpma DW; Moroni L
    J Biomed Mater Res A; 2012 Oct; 100(10):2739-49. PubMed ID: 22623412
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A numerical model of heterogeneous surface strains in polymer scaffolds.
    Baas E; Kuiper JH
    J Biomech; 2008; 41(6):1374-8. PubMed ID: 18353333
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of the compressive behaviour of the three-dimensional printed porous titanium for dental implants using a modified cellular solid model.
    Gagg G; Ghassemieh E; Wiria FE
    Proc Inst Mech Eng H; 2013 Sep; 227(9):1020-6. PubMed ID: 23804952
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D characterization of bone strains in the rat tibia loading model.
    Torcasio A; Zhang X; Duyck J; van Lenthe GH
    Biomech Model Mechanobiol; 2012 Mar; 11(3-4):403-10. PubMed ID: 21688057
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering.
    Williams JM; Adewunmi A; Schek RM; Flanagan CL; Krebsbach PH; Feinberg SE; Hollister SJ; Das S
    Biomaterials; 2005 Aug; 26(23):4817-27. PubMed ID: 15763261
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Load-adaptive scaffold architecturing: a bioinspired approach to the design of porous additively manufactured scaffolds with optimized mechanical properties.
    Rainer A; Giannitelli SM; Accoto D; De Porcellinis S; Guglielmelli E; Trombetta M
    Ann Biomed Eng; 2012 Apr; 40(4):966-75. PubMed ID: 22109804
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stress analysis of the interface between cervical vertebrae end plates and the Bryan, Prestige LP, and ProDisc-C cervical disc prostheses: an in vivo image-based finite element study.
    Lin CY; Kang H; Rouleau JP; Hollister SJ; Marca FL
    Spine (Phila Pa 1976); 2009 Jul; 34(15):1554-60. PubMed ID: 19564765
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Generation and simulated imaging of pseudo-scaffolds to aid characterisation by X-ray micro CT.
    Morris DE; Mather ML; Crowe JA
    Biomaterials; 2009 Sep; 30(25):4233-46. PubMed ID: 19473700
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Low elastic modulus titanium-nickel scaffolds for bone implants.
    Li J; Yang H; Wang H; Ruan J
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():110-4. PubMed ID: 24268239
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimization of composition, structure and mechanical strength of bioactive 3-D glass-ceramic scaffolds for bone substitution.
    Baino F; Ferraris M; Bretcanu O; Verné E; Vitale-Brovarone C
    J Biomater Appl; 2013 Mar; 27(7):872-90. PubMed ID: 22207602
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heterogeneous three-dimensional strain fields during unconfined cyclic compression in bovine articular cartilage explants.
    Neu CP; Hull ML; Walton JH
    J Orthop Res; 2005 Nov; 23(6):1390-8. PubMed ID: 15972257
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The development of computer-aided system for tissue scaffolds (CASTS) system for functionally graded tissue-engineering scaffolds.
    Sudarmadji N; Chua CK; Leong KF
    Methods Mol Biol; 2012; 868():111-23. PubMed ID: 22692607
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dental application of novel finite element analysis software for three-dimensional finite element modeling of a dentulous mandible from its computed tomography images.
    Nakamura K; Tajima K; Chen KK; Nagamatsu Y; Kakigawa H; Masumi SI
    Proc Inst Mech Eng H; 2013 Dec; 227(12):1312-8. PubMed ID: 24077258
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Micro-CT studies on 3-D bioactive glass-ceramic scaffolds for bone regeneration.
    Renghini C; Komlev V; Fiori F; Verné E; Baino F; Vitale-Brovarone C
    Acta Biomater; 2009 May; 5(4):1328-37. PubMed ID: 19038589
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Residual thermal stress simulation in three-dimensional molar crown systems: a finite element analysis.
    Bonfante EA; Rafferty BT; Silva NR; Hanan JC; Rekow ED; Thompson VP; Coelho PG
    J Prosthodont; 2012 Oct; 21(7):529-34. PubMed ID: 22672470
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intrinsic mechanical properties of trabecular calcaneus determined by finite-element models using 3D synchrotron microtomography.
    Follet H; Peyrin F; Vidal-Salle E; Bonnassie A; Rumelhart C; Meunier PJ
    J Biomech; 2007; 40(10):2174-83. PubMed ID: 17196599
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vivo loading increases mechanical properties of scaffold by affecting bone formation and bone resorption rates.
    Roshan-Ghias A; Lambers FM; Gholam-Rezaee M; Müller R; Pioletti DP
    Bone; 2011 Dec; 49(6):1357-64. PubMed ID: 21958844
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.