BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 24257625)

  • 1. The auto-inhibitory domain and ATP-independent microtubule-binding region of Kinesin heavy chain are major functional domains for transport in the Drosophila germline.
    Williams LS; Ganguly S; Loiseau P; Ng BF; Palacios IM
    Development; 2014 Jan; 141(1):176-86. PubMed ID: 24257625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinesin-1 tail autoregulation and microtubule-binding regions function in saltatory transport but not ooplasmic streaming.
    Moua P; Fullerton D; Serbus LR; Warrior R; Saxton WM
    Development; 2011 Mar; 138(6):1087-92. PubMed ID: 21307100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular basis of mRNA transport by a kinesin-1-atypical tropomyosin complex.
    Dimitrova-Paternoga L; Jagtap PKA; Cyrklaff A; Vaishali ; Lapouge K; Sehr P; Perez K; Heber S; Löw C; Hennig J; Ephrussi A
    Genes Dev; 2021 Jul; 35(13-14):976-991. PubMed ID: 34140355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinesin light chain-independent function of the Kinesin heavy chain in cytoplasmic streaming and posterior localisation in the Drosophila oocyte.
    Palacios IM; St Johnston D
    Development; 2002 Dec; 129(23):5473-85. PubMed ID: 12403717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinesin's light chains inhibit the head- and microtubule-binding activity of its tail.
    Wong YL; Rice SE
    Proc Natl Acad Sci U S A; 2010 Jun; 107(26):11781-6. PubMed ID: 20547877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wolbachia and host germline components compete for kinesin-mediated transport to the posterior pole of the Drosophila oocyte.
    Russell SL; Lemseffer N; White PM; Sullivan WT
    PLoS Pathog; 2018 Aug; 14(8):e1007216. PubMed ID: 30110391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinesin-1 captures RNA cargo in its adaptable coils.
    Cross JA; Woolfson DN; Dodding MP
    Genes Dev; 2021 Jul; 35(13-14):937-939. PubMed ID: 34210804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Drosophila kinesin light chain. Primary structure and interaction with kinesin heavy chain.
    Gauger AK; Goldstein LS
    J Biol Chem; 1993 Jun; 268(18):13657-66. PubMed ID: 8514798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drosophila PAT1 is required for Kinesin-1 to transport cargo and to maximize its motility.
    Loiseau P; Davies T; Williams LS; Mishima M; Palacios IM
    Development; 2010 Aug; 137(16):2763-72. PubMed ID: 20630947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SKIP controls lysosome positioning using a composite kinesin-1 heavy and light chain-binding domain.
    Sanger A; Yip YY; Randall TS; Pernigo S; Steiner RA; Dodding MP
    J Cell Sci; 2017 May; 130(9):1637-1651. PubMed ID: 28302907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of kinesin-1-based microtubule sliding in Drosophila nervous system development.
    Winding M; Kelliher MT; Lu W; Wildonger J; Gelfand VI
    Proc Natl Acad Sci U S A; 2016 Aug; 113(34):E4985-94. PubMed ID: 27512046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinesin-73 is a processive motor that localizes to Rab5-containing organelles.
    Huckaba TM; Gennerich A; Wilhelm JE; Chishti AH; Vale RD
    J Biol Chem; 2011 Mar; 286(9):7457-67. PubMed ID: 21169635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of kinesin heavy chain in Crumbs localization along the rhabdomere elongation in Drosophila photoreceptor.
    League GP; Nam SC
    PLoS One; 2011; 6(6):e21218. PubMed ID: 21695062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Follicle separation during Drosophila oogenesis requires the activity of the kinesin II-associated polypeptide Kap in germline cells.
    Pflanz R; Peter A; Schäfer U; Jäckle H
    EMBO Rep; 2004 May; 5(5):510-4. PubMed ID: 15088066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microtubule-microtubule sliding by kinesin-1 is essential for normal cytoplasmic streaming in Drosophila oocytes.
    Lu W; Winding M; Lakonishok M; Wildonger J; Gelfand VI
    Proc Natl Acad Sci U S A; 2016 Aug; 113(34):E4995-5004. PubMed ID: 27512034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent.
    Glater EE; Megeath LJ; Stowers RS; Schwarz TL
    J Cell Biol; 2006 May; 173(4):545-57. PubMed ID: 16717129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinesin-1, -2, and -3 motors use family-specific mechanochemical strategies to effectively compete with dynein during bidirectional transport.
    Gicking AM; Ma TC; Feng Q; Jiang R; Badieyan S; Cianfrocco MA; Hancock WO
    Elife; 2022 Sep; 11():. PubMed ID: 36125250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic autoinhibition and activation mechanisms control kinesin-1 motor activity.
    Chiba K; Ori-McKenney KM; Niwa S; McKenney RJ
    Cell Rep; 2022 May; 39(9):110900. PubMed ID: 35649356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polar transport in the Drosophila oocyte requires Dynein and Kinesin I cooperation.
    Januschke J; Gervais L; Dass S; Kaltschmidt JA; Lopez-Schier H; St Johnston D; Brand AH; Roth S; Guichet A
    Curr Biol; 2002 Dec; 12(23):1971-81. PubMed ID: 12477385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The third P-loop domain in cytoplasmic dynein heavy chain is essential for dynein motor function and ATP-sensitive microtubule binding.
    Silvanovich A; Li MG; Serr M; Mische S; Hays TS
    Mol Biol Cell; 2003 Apr; 14(4):1355-65. PubMed ID: 12686593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.