These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 24257816)
21. Genetic and Functional Analysis of the Biosynthesis of a Non-Ribosomal Peptide Siderophore in Burkholderia xenovorans LB400. Vargas-Straube MJ; Cámara B; Tello M; Montero-Silva F; Cárdenas F; Seeger M PLoS One; 2016; 11(3):e0151273. PubMed ID: 26963250 [TBL] [Abstract][Full Text] [Related]
23. Characterization and genomic analysis of chromate resistant and reducing Bacillus cereus strain SJ1. He M; Li X; Guo L; Miller SJ; Rensing C; Wang G BMC Microbiol; 2010 Aug; 10():221. PubMed ID: 20723231 [TBL] [Abstract][Full Text] [Related]
24. The long-chain flavodoxin FldX1 improves the biodegradation of 4-hydroxyphenylacetate and 3-hydroxyphenylacetate and counteracts the oxidative stress associated to aromatic catabolism in Paraburkholderia xenovorans. Rodríguez-Castro L; Durán RE; Méndez V; Dorochesi F; Zühlke D; Riedel K; Seeger M Biol Res; 2024 Apr; 57(1):12. PubMed ID: 38561836 [TBL] [Abstract][Full Text] [Related]
25. Genetic and genomic insights into the role of benzoate-catabolic pathway redundancy in Burkholderia xenovorans LB400. Denef VJ; Klappenbach JA; Patrauchan MA; Florizone C; Rodrigues JL; Tsoi TV; Verstraete W; Eltis LD; Tiedje JM Appl Environ Microbiol; 2006 Jan; 72(1):585-95. PubMed ID: 16391095 [TBL] [Abstract][Full Text] [Related]
26. Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD. Li C; Li JJ; Montgomery MG; Wood SP; Bugg TD Biochemistry; 2006 Oct; 45(41):12470-9. PubMed ID: 17029402 [TBL] [Abstract][Full Text] [Related]
27. Quantification of the 16S-23S rRNA internal transcribed spacers of Burkholderia xenovorans strain LB400 using real-time PCR in soil samples. Norini MP; Secher C; Lollier M; Jézéquel K; Cornu JY; Lebeau T Lett Appl Microbiol; 2013 May; 56(5):366-72. PubMed ID: 23384335 [TBL] [Abstract][Full Text] [Related]
28. Biphenyl and benzoate metabolism in a genomic context: outlining genome-wide metabolic networks in Burkholderia xenovorans LB400. Denef VJ; Park J; Tsoi TV; Rouillard JM; Zhang H; Wibbenmeyer JA; Verstraete W; Gulari E; Hashsham SA; Tiedje JM Appl Environ Microbiol; 2004 Aug; 70(8):4961-70. PubMed ID: 15294836 [TBL] [Abstract][Full Text] [Related]
29. Expression of chromate resistance genes from Shewanella sp. strain ANA-3 in Escherichia coli. Aguilar-Barajas E; Paluscio E; Cervantes C; Rensing C FEMS Microbiol Lett; 2008 Aug; 285(1):97-100. PubMed ID: 18537831 [TBL] [Abstract][Full Text] [Related]
30. Metabolism of chlorobiphenyls by a variant biphenyl dioxygenase exhibiting enhanced activity toward dibenzofuran. Viger JF; Mohammadi M; Barriault D; Sylvestre M Biochem Biophys Res Commun; 2012 Mar; 419(2):362-7. PubMed ID: 22342725 [TBL] [Abstract][Full Text] [Related]
31. Metabolism of dibenzofuran and dibenzo-p-dioxin by the biphenyl dioxygenase of Burkholderia xenovorans LB400 and Comamonas testosteroni B-356. L'Abbée JB; Barriault D; Sylvestre M Appl Microbiol Biotechnol; 2005 Jun; 67(4):506-14. PubMed ID: 15700128 [TBL] [Abstract][Full Text] [Related]
32. Transformation of hydroxylated derivatives of 2,5-dichlorobiphenyl and 2,4,6-trichlorobiphenyl by Burkholderia xenovorans LB400. Tehrani R; Lyv MM; Van Aken B Environ Sci Pollut Res Int; 2014 May; 21(10):6346-53. PubMed ID: 23589238 [TBL] [Abstract][Full Text] [Related]
33. Discerning three novel chromate reduce and transport genes of highly efficient Pannonibacter phragmitetus BB: From genome to gene and protein. Chai L; Ding C; Tang C; Yang W; Yang Z; Wang Y; Liao Q; Li J Ecotoxicol Environ Saf; 2018 Oct; 162():139-146. PubMed ID: 29990725 [TBL] [Abstract][Full Text] [Related]
34. CHR, a novel family of prokaryotic proton motive force-driven transporters probably containing chromate/sulfate antiporters. Nies DH; Koch S; Wachi S; Peitzsch N; Saier MH J Bacteriol; 1998 Nov; 180(21):5799-802. PubMed ID: 9791139 [TBL] [Abstract][Full Text] [Related]
35. Response to (chloro)biphenyls of the polychlorobiphenyl-degrader Burkholderia xenovorans LB400 involves stress proteins also induced by heat shock and oxidative stress. Agulló L; Cámara B; Martínez P; Latorre V; Seeger M FEMS Microbiol Lett; 2007 Feb; 267(2):167-75. PubMed ID: 17166226 [TBL] [Abstract][Full Text] [Related]
36. [Enhanced aerobic degradation of low chlorinated biphenyls by constructing surfactants Burkholderia xenovorans LB400 based system]. Chen SY; Zhang J; Wang H; Ren Y Huan Jing Ke Xue; 2014 Oct; 35(10):3918-25. PubMed ID: 25693402 [TBL] [Abstract][Full Text] [Related]
37. [Characterization of chromate resistance in genetically engineered Escherichia coli expressing chromate ion transporter ChrA]. Zhou SM; Dong LL; He Y; Xiao H Nan Fang Yi Ke Da Xue Xue Bao; 2017 Oct; 37(10):1290-1295. PubMed ID: 29070456 [TBL] [Abstract][Full Text] [Related]
38. Environmentally relevant parameters affecting PCB degradation: carbon source- and growth phase-mitigated effects of the expression of the biphenyl pathway and associated genes in Burkholderia xenovorans LB400. Parnell JJ; Denef VJ; Park J; Tsoi T; Tiedje JM Biodegradation; 2010 Feb; 21(1):147-56. PubMed ID: 19672561 [TBL] [Abstract][Full Text] [Related]
39. Enhanced degradation of haloacid by heterologous expression in related Burkholderia species. Su X; Deng L; Kong KF; Tsang JS Biotechnol Bioeng; 2013 Oct; 110(10):2687-96. PubMed ID: 23568428 [TBL] [Abstract][Full Text] [Related]
40. Distinct roles for two CYP226 family cytochromes P450 in abietane diterpenoid catabolism by Burkholderia xenovorans LB400. Smith DJ; Patrauchan MA; Florizone C; Eltis LD; Mohn WW J Bacteriol; 2008 Mar; 190(5):1575-83. PubMed ID: 18156276 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]