These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene. Anthony JR; Anthony LC; Nowroozi F; Kwon G; Newman JD; Keasling JD Metab Eng; 2009 Jan; 11(1):13-9. PubMed ID: 18775787 [TBL] [Abstract][Full Text] [Related]
3. Post-translational regulation of mevalonate kinase by intermediates of the cholesterol and nonsterol isoprene biosynthetic pathways. Hinson DD; Chambliss KL; Toth MJ; Tanaka RD; Gibson KM J Lipid Res; 1997 Nov; 38(11):2216-23. PubMed ID: 9392419 [TBL] [Abstract][Full Text] [Related]
4. Compartmentalization of cholesterol biosynthesis. Conversion of mevalonate to farnesyl diphosphate occurs in the peroxisomes. Biardi L; Krisans SK J Biol Chem; 1996 Jan; 271(3):1784-8. PubMed ID: 8576183 [TBL] [Abstract][Full Text] [Related]
5. Redirection of flux through the FPP branch-point in Saccharomyces cerevisiae by down-regulating squalene synthase. Paradise EM; Kirby J; Chan R; Keasling JD Biotechnol Bioeng; 2008 Jun; 100(2):371-8. PubMed ID: 18175359 [TBL] [Abstract][Full Text] [Related]
6. Optimization of a heterologous mevalonate pathway through the use of variant HMG-CoA reductases. Ma SM; Garcia DE; Redding-Johanson AM; Friedland GD; Chan R; Batth TS; Haliburton JR; Chivian D; Keasling JD; Petzold CJ; Lee TS; Chhabra SR Metab Eng; 2011 Sep; 13(5):588-97. PubMed ID: 21810477 [TBL] [Abstract][Full Text] [Related]
7. Conversion of Mevalonate 3-Kinase into 5-Phosphomevalonate 3-Kinase by Single Amino Acid Mutations. Motoyama K; Sobue F; Kawaide H; Yoshimura T; Hemmi H Appl Environ Microbiol; 2019 May; 85(9):. PubMed ID: 30824437 [TBL] [Abstract][Full Text] [Related]
8. [Biosynthesis of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli through introducing mevalonate pathway]. Wu T; Wu S; Yin Q; Dai H; Li S; Dong F; Chen B; Fang H Sheng Wu Gong Cheng Xue Bao; 2011 Jul; 27(7):1040-8. PubMed ID: 22016988 [TBL] [Abstract][Full Text] [Related]
9. Improvement of isoprene production in Escherichia coli by rational optimization of RBSs and key enzymes screening. Li M; Chen H; Liu C; Guo J; Xu X; Zhang H; Nian R; Xian M Microb Cell Fact; 2019 Jan; 18(1):4. PubMed ID: 30626394 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of human mevalonate kinase by allosteric inhibitors of farnesyl pyrophosphate synthase. Salari S; Lee HF; Tsantrizos YS; Park J FEBS Open Bio; 2024 Aug; 14(8):1320-1339. PubMed ID: 38923323 [TBL] [Abstract][Full Text] [Related]
11. A squalene synthase protein degradation method for improved sesquiterpene production in Saccharomyces cerevisiae. Peng B; Plan MR; Chrysanthopoulos P; Hodson MP; Nielsen LK; Vickers CE Metab Eng; 2017 Jan; 39():209-219. PubMed ID: 27939849 [TBL] [Abstract][Full Text] [Related]
12. Differential binding of proteins to peroxisomes in rat hepatoma cells: unique association of enzymes involved in isoprenoid metabolism. Gupta SD; Mehan RS; Tansey TR; Chen HT; Goping G; Goldberg I; Shechter I J Lipid Res; 1999 Sep; 40(9):1572-84. PubMed ID: 10484604 [TBL] [Abstract][Full Text] [Related]
14. Development of petri net-based dynamic model for improved production of farnesyl pyrophosphate by integrating mevalonate and methylerythritol phosphate pathways in yeast. Baadhe RR; Mekala NK; Palagiri SR; Parcha SR Appl Biochem Biotechnol; 2012 Jul; 167(5):1172-82. PubMed ID: 22350871 [TBL] [Abstract][Full Text] [Related]
15. Enhancement of farnesyl diphosphate pool as direct precursor of sesquiterpenes through metabolic engineering of the mevalonate pathway in Saccharomyces cerevisiae. Asadollahi MA; Maury J; Schalk M; Clark A; Nielsen J Biotechnol Bioeng; 2010 May; 106(1):86-96. PubMed ID: 20091767 [TBL] [Abstract][Full Text] [Related]
16. Subcellular evidence for the involvement of peroxisomes in plant isoprenoid biosynthesis. Clastre M; Papon N; Courdavault V; Giglioli-Guivarc'h N; St-Pierre B; Simkin AJ Plant Signal Behav; 2011 Dec; 6(12):2044-6. PubMed ID: 22080790 [TBL] [Abstract][Full Text] [Related]
17. A kinetic-based approach to understanding heterologous mevalonate pathway function in E. coli. Weaver LJ; Sousa MM; Wang G; Baidoo E; Petzold CJ; Keasling JD Biotechnol Bioeng; 2015 Jan; 112(1):111-9. PubMed ID: 24981116 [TBL] [Abstract][Full Text] [Related]
18. Structural analysis of mevalonate-3-kinase provides insight into the mechanisms of isoprenoid pathway decarboxylases. Vinokur JM; Korman TP; Sawaya MR; Collazo M; Cascio D; Bowie JU Protein Sci; 2015 Feb; 24(2):212-20. PubMed ID: 25422158 [TBL] [Abstract][Full Text] [Related]
19. Engineering a Carotenoid-Overproducing Strain of Azospirillum brasilense for Heterologous Production of Geraniol and Amorphadiene. Mishra S; Pandey P; Dubey AP; Zehra A; Chanotiya CS; Tripathi AK; Mishra MN Appl Environ Microbiol; 2020 Aug; 86(17):. PubMed ID: 32591387 [No Abstract] [Full Text] [Related]