BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 2425803)

  • 1. The conversion of native adenylylated glutamine synthetase into phosphotyrosine enzyme by micrococcal nuclease.
    Kimura K; Kaizu Y; Matsuoka K; Nakano Y
    Biochem Biophys Res Commun; 1986 Jun; 137(2):716-21. PubMed ID: 2425803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. o-Phosphotyrosyl glutamine synthetase: modification of the nucleotide ligation site of adenylylated glutamine synthetase.
    Kimura K; Nakano Y; Matsuoka K
    J Biochem; 1989 Jan; 105(1):84-7. PubMed ID: 2472384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micrococcal nuclease cleavage of nucleotide linked to glutamine synthetase yields phosphotyrosine at the ligation site.
    Martensen TM; Stadtman ER
    Proc Natl Acad Sci U S A; 1982 Nov; 79(21):6458-60. PubMed ID: 6183662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of glutamine synthetase activity by phosphorylation instead of by adenylylation.
    Kimura K; Suzuki H; Nakano Y
    Biochem Biophys Res Commun; 1988 Sep; 155(3):1133-8. PubMed ID: 2902854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutation of the adenylylated tyrosine of glutamine synthetase alters its catalytic properties.
    Luo S; Kim G; Levine RL
    Biochemistry; 2005 Jul; 44(27):9441-6. PubMed ID: 15996098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic cycle of the biosynthetic reaction catalyzed by adenylylated glutamine synthetase from Escherichia coli.
    Rhee SG; Ubom GA; Hunt JB; Chock PB
    J Biol Chem; 1982 Jan; 257(1):289-97. PubMed ID: 6118373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential inhibition of adenylylated and deadenylylated forms of M. tuberculosis glutamine synthetase as a drug discovery platform.
    Theron A; Roth RL; Hoppe H; Parkinson C; van der Westhuyzen CW; Stoychev S; Wiid I; Pietersen RD; Baker B; Kenyon CP
    PLoS One; 2017; 12(10):e0185068. PubMed ID: 28972974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of Mycobacterium smegmatis glutamine synthetase by adenylylation.
    Kimura K; Yagi K; Matsuoka K
    J Biochem; 1984 Jun; 95(6):1559-67. PubMed ID: 6147340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational changes in Mycobacterium smegmatis glutamine synthetase induced by certain divalent cations.
    Matsuoka K; Kimura K
    J Biochem; 1985 Apr; 97(4):1033-42. PubMed ID: 2863260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epsilon-adenylylated glutamine synthetase: an internal fluorescence probe for enzyme conformation.
    Chock PB; Huang CY; Timmons RB; Stadtman ER
    Proc Natl Acad Sci U S A; 1973 Nov; 70(11):3134-8. PubMed ID: 4150372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mn-Mn interaction in adenylylated and unadenylylated glutamine synthetase.
    Gibbs EJ; Ransom SC; Cuppett S; Villafranca JJ
    Biochem Biophys Res Commun; 1984 May; 120(3):939-45. PubMed ID: 6145412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel reaction catalyzed by unadenylylated glutamine synthetase from Escherichia coli. AMP-dependent synthesis of pyrophosphate and L-Glutamate from orthophosphate and L-glutamine.
    Whitley EJ; Ginsburg A
    J Biol Chem; 1980 Nov; 255(22):10663-70. PubMed ID: 6107298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of AMP specific antibodies to differentiate between adenylylated and unadenylylated E. coli glutamine synthetase.
    Hohman RJ; Stadtman ER
    Biochem Biophys Res Commun; 1978 Jun; 82(3):865-70. PubMed ID: 29611
    [No Abstract]   [Full Text] [Related]  

  • 14. Time-resolved fluorescence and computational studies of adenylylated glutamine synthetase: analysis of intersubunit interactions.
    Atkins WM; Cader BM; Hemmingsen J; Villafranca JJ
    Protein Sci; 1993 May; 2(5):800-13. PubMed ID: 8098638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleotidylation, not phosphorylation, is the major source of the phosphotyrosine detected in enteric bacteria.
    Foster R; Thorner J; Martin GS
    J Bacteriol; 1989 Jan; 171(1):272-9. PubMed ID: 2464577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anti-AMP antibody precipitation of multiply adenylylated forms of glutamine synthetase from Escherichia coli: a model relating both concentration and density of antigenic sites with the antibody-antigen interaction.
    Hohman RJ; Rhee SG; Stadtman ER
    Proc Natl Acad Sci U S A; 1980 Dec; 77(12):7410-4. PubMed ID: 6164060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical parameters of glutamine synthetase from Klebsiella aerogenes.
    Bender RA; Janssen KA; Resnick AD; Blumenberg M; Foor F; Magasanik B
    J Bacteriol; 1977 Feb; 129(2):1001-9. PubMed ID: 14104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 5'-Nucleotidyl-O-tyrosine bond in glutamine synthetase.
    Rhee SG
    Methods Enzymol; 1984; 107():183-200. PubMed ID: 6150418
    [No Abstract]   [Full Text] [Related]  

  • 19. Effect of metal ions and adenylylation state on the internal thermodynamics of phosphoryl transfer in the Escherichia coli glutamine synthetase reaction.
    Abell LM; Villafranca JJ
    Biochemistry; 1991 Feb; 30(5):1413-8. PubMed ID: 1671336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of the synthesis of glutamine synthetase by the PII protein in Klebsiella aerogenes.
    Foor F; Reuveny Z; Magasanik B
    Proc Natl Acad Sci U S A; 1980 May; 77(5):2636-40. PubMed ID: 6104810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.