These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 24258158)

  • 1. Connecting fractional anisotropy from medical images with mechanical anisotropy of a hyperviscoelastic fibre-reinforced constitutive model for brain tissue.
    Giordano C; Kleiven S
    J R Soc Interface; 2014 Feb; 11(91):20130914. PubMed ID: 24258158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A transversely isotropic hyperelastic constitutive model of the PDL. Analytical and computational aspects.
    Limbert G; Middleton J; Laizans J; Dobelis M; Knets I
    Comput Methods Biomech Biomed Engin; 2003; 6(5-6):337-45. PubMed ID: 14675954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A robust anisotropic hyperelastic formulation for the modelling of soft tissue.
    Nolan DR; Gower AL; Destrade M; Ogden RW; McGarry JP
    J Mech Behav Biomed Mater; 2014 Nov; 39():48-60. PubMed ID: 25104546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of brain deformations and risk of traumatic brain injury due to closed-head impact: quantitative analysis of the effects of boundary conditions and brain tissue constitutive model.
    Wang F; Han Y; Wang B; Peng Q; Huang X; Miller K; Wittek A
    Biomech Model Mechanobiol; 2018 Aug; 17(4):1165-1185. PubMed ID: 29754317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determining constitutive behavior of the brain tissue using digital image correlation and finite element modeling.
    Felfelian AM; Baradaran Najar A; Jafari Nedoushan R; Salehi H
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1927-1945. PubMed ID: 31197510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A micromechanical hyperelastic modeling of brain white matter under large deformation.
    Karami G; Grundman N; Abolfathi N; Naik A; Ziejewski M
    J Mech Behav Biomed Mater; 2009 Jul; 2(3):243-54. PubMed ID: 19627829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of constitutive models of arterial layers with distributed collagen fibre orientations.
    Skacel P; Bursa J
    Acta Bioeng Biomech; 2014; 16(3):47-58. PubMed ID: 25308192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constructing anisotropic finite element model of bone from computed tomography (CT).
    Kazembakhshi S; Luo Y
    Biomed Mater Eng; 2014; 24(6):2619-26. PubMed ID: 25226965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An anisotropic inelastic constitutive model to describe stress softening and permanent deformation in arterial tissue.
    Maher E; Creane A; Lally C; Kelly DJ
    J Mech Behav Biomed Mater; 2012 Aug; 12():9-19. PubMed ID: 22659364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and validation of an advanced anisotropic visco-hyperelastic human brain FE model.
    Sahoo D; Deck C; Willinger R
    J Mech Behav Biomed Mater; 2014 May; 33():24-42. PubMed ID: 24063789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A visco-hyperelastic-damage constitutive model for the analysis of the biomechanical response of the periodontal ligament.
    Natali AN; Carniel EL; Pavan PG; Sander FG; Dorow C; Geiger M
    J Biomech Eng; 2008 Jun; 130(3):031004. PubMed ID: 18532853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The micromechanical environment of intervertebral disc cells determined by a finite deformation, anisotropic, and biphasic finite element model.
    Baer AE; Laursen TA; Guilak F; Setton LA
    J Biomech Eng; 2003 Feb; 125(1):1-11. PubMed ID: 12661192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling and simulation of porcine liver tissue indentation using finite element method and uniaxial stress-strain data.
    Fu YB; Chui CK
    J Biomech; 2014 Jul; 47(10):2430-5. PubMed ID: 24811044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is depression a disconnection syndrome? Meta-analysis of diffusion tensor imaging studies in patients with MDD.
    Liao Y; Huang X; Wu Q; Yang C; Kuang W; Du M; Lui S; Yue Q; Chan RC; Kemp GJ; Gong Q
    J Psychiatry Neurosci; 2013 Jan; 38(1):49-56. PubMed ID: 22691300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element prediction of transchondral stress and strain in the human hip.
    Henak CR; Ateshian GA; Weiss JA
    J Biomech Eng; 2014 Feb; 136(2):021021. PubMed ID: 24292495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A transversely isotropic viscoelastic constitutive equation for brainstem undergoing finite deformation.
    Ning X; Zhu Q; Lanir Y; Margulies SS
    J Biomech Eng; 2006 Dec; 128(6):925-33. PubMed ID: 17154695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of soft tissue failure using the material point method.
    Ionescu I; Guilkey JE; Berzins M; Kirby RM; Weiss JA
    J Biomech Eng; 2006 Dec; 128(6):917-24. PubMed ID: 17154694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applying DTI white matter orientations to finite element head models to examine diffuse TBI under high rotational accelerations.
    Colgan NC; Gilchrist MD; Curran KM
    Prog Biophys Mol Biol; 2010 Dec; 103(2-3):304-9. PubMed ID: 20869383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rate dependent anisotropic constitutive modeling of brain tissue undergoing large deformation.
    Haldar K; Pal C
    J Mech Behav Biomed Mater; 2018 May; 81():178-194. PubMed ID: 29529589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of anisotropy on brain injury prediction.
    Giordano C; Cloots RJ; van Dommelen JA; Kleiven S
    J Biomech; 2014 Mar; 47(5):1052-9. PubMed ID: 24462379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.