These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 24258290)
21. Integral association of phytochrome with a membranous fraction fromAvena shoots: in vivo characterization and physiological significance. Watson PJ; Smith H Planta; 1982 Mar; 154(2):128-34. PubMed ID: 24275972 [TBL] [Abstract][Full Text] [Related]
22. Photoresponses of transgenic tobacco plants expressing an oat phytochrome gene. McCormac AC; Cherry JR; Hershey HP; Vierstra RD; Smith H Planta; 1991 Sep; 185(2):162-70. PubMed ID: 24186338 [TBL] [Abstract][Full Text] [Related]
23. Persistent effects of changes in phytochrome status on internode growth in light-grown mustard: Occurrence, kinetics and locus of perception. Casal JJ; Smith H Planta; 1988 Aug; 175(2):214-20. PubMed ID: 24221715 [TBL] [Abstract][Full Text] [Related]
24. Photoreversible change in the conformation of phytochrome as probed with a covalently bound fluorescent sulfhydryl reagent, N-(9-acridinyl)maleimide. Yamamoto KT Biochim Biophys Acta; 1993 Jun; 1163(3):227-33. PubMed ID: 8507660 [TBL] [Abstract][Full Text] [Related]
25. Light requirement, phytochrome and photoperiodic induction of flowering of Pharbitis nil Chois : III. A comparison of spectrophotometric and physiological assay of phytochrome transformation during induction. King RW; Vince-Prue D; Quail PH Planta; 1978 Jan; 141(1):15-22. PubMed ID: 24414626 [TBL] [Abstract][Full Text] [Related]
26. Red light-induced formation of ubiquitin-phytochrome conjugates: Identification of possible intermediates of phytochrome degradation. Shanklin J; Jabben M; Vierstra RD Proc Natl Acad Sci U S A; 1987 Jan; 84(2):359-63. PubMed ID: 16593800 [TBL] [Abstract][Full Text] [Related]
27. Photophysiology and phytochrome content of long-hypocotyl mutant and wild-type cucumber seedlings. Adamse P; Jaspers PA; Bakker JA; Kendrick RE; Koornneef M Plant Physiol; 1988 May; 87(1):264-8. PubMed ID: 16666116 [TBL] [Abstract][Full Text] [Related]
28. [Further Investigations on the phytochrome-mediated accumulation of ascorbic acid in the mustard seedling (Sinapis alba L.)]. Schopfer P Planta; 1967 Sep; 74(3):210-27. PubMed ID: 24549948 [TBL] [Abstract][Full Text] [Related]
29. Regulation of enzyme levels by phytochrome in mustard cotyledons: Multiple mechanisms? Frosch S; Drumm H; Mohr H Planta; 1977 Jan; 136(2):181-6. PubMed ID: 24420325 [TBL] [Abstract][Full Text] [Related]
30. Control by light of hypocotyl growth in de-etiolated mustard seedlings : II. Sensitivity for newly-formed phytochrome after a light to dark transtition. Wildermann A; Drumm H; Schäfer E; Mohr H Planta; 1978 Jan; 141(2):217-23. PubMed ID: 24414780 [TBL] [Abstract][Full Text] [Related]
31. Discrimination between the red- and far-red-absorbing forms of phytochrome from Avena sativa L. by monoclonal antibodies. Thomas B; Penn SE; Butcher GW; Galfre G Planta; 1984 Mar; 160(4):382-4. PubMed ID: 24258587 [TBL] [Abstract][Full Text] [Related]
32. Stability of phytochrome concentration in dicotyledonous tissues under continuous far-red light. Clarkson DT; Hillman WS Planta; 1967 Sep; 75(3):286-90. PubMed ID: 24549313 [TBL] [Abstract][Full Text] [Related]
33. Red light-induced accumulation of ubiquitin-phytochrome conjugates in both monocots and dicots. Jabben M; Shanklin J; Vierstra RD Plant Physiol; 1989 Jun; 90(2):380-4. PubMed ID: 16666778 [TBL] [Abstract][Full Text] [Related]
34. Phytochrome action in light-grown plants: the influence of light quality and fluence rate on extension growth in Sinapis alba L. Wall JK; Johnson CB Planta; 1981 Oct; 153(2):101-8. PubMed ID: 24276759 [TBL] [Abstract][Full Text] [Related]
35. Absence of fluence rate dependency of phytochrome modulation of stem extension in light-grown Sinapis alba L. Morgan DC; Child R; Smith H Planta; 1981 May; 151(5):497-8. PubMed ID: 24302117 [TBL] [Abstract][Full Text] [Related]
36. Arabidopsis phytochrome a is modularly structured to integrate the multiple features that are required for a highly sensitized phytochrome. Oka Y; Ono Y; Toledo-Ortiz G; Kokaji K; Matsui M; Mochizuki N; Nagatani A Plant Cell; 2012 Jul; 24(7):2949-62. PubMed ID: 22843485 [TBL] [Abstract][Full Text] [Related]
37. [Kinetical studies to interpret the effects of succedaneous irradiations with red and far-red on photomorphogenesis (anthocyanin synthesis in mustard seedlings, Sinapis alba L.)]. Wagner E; Mohr H Planta; 1966 Mar; 70(1):34-41. PubMed ID: 24557927 [TBL] [Abstract][Full Text] [Related]
38. Spectrophotometric phytochrome measurements in light-grown Avena sativa L. Jabben M; Deitzer GF Planta; 1978 Jan; 143(3):309-13. PubMed ID: 24408470 [TBL] [Abstract][Full Text] [Related]
39. The appearance of competence for phytochrome-mediated anthocyanin synthesis in the cotyledons of Sinapis alba L. Steinitz B; Drumm H; Mohr H Planta; 1976 Jan; 130(1):23-31. PubMed ID: 24424538 [TBL] [Abstract][Full Text] [Related]
40. Kinetics of the dichroic reorientation of phytochrome during photoconversion inMougeotia. Kraml M; Enders M; Bürkel N Planta; 1984 May; 161(3):216-22. PubMed ID: 24253646 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]