These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 24258338)
1. In situ mixed donor synthesis of ampicillin with ethylene glycol co-solvent. Deaguero AL; Bommarius AS Biotechnol Bioeng; 2014 May; 111(5):1054-8. PubMed ID: 24258338 [TBL] [Abstract][Full Text] [Related]
2. Improving the diastereoselectivity of penicillin G acylase for ampicillin synthesis from racemic substrates. Deaguero AL; Blum JK; Bommarius AS Protein Eng Des Sel; 2012 Mar; 25(3):135-44. PubMed ID: 22271751 [TBL] [Abstract][Full Text] [Related]
3. Efficient enzymatic synthesis of ampicillin by mutant Alcaligenes faecalis penicillin G acylase. Deng S; Su E; Ma X; Yang S; Wei D J Biotechnol; 2015 Apr; 199():62-8. PubMed ID: 25681630 [TBL] [Abstract][Full Text] [Related]
4. Optimization of yield in kinetically controlled synthesis of ampicillin with immobilized penicillin acylase in organic media. Illanes A; Anjarí S; Arrieta R; Aguirre C Appl Biochem Biotechnol; 2002 Mar; 97(3):165-79. PubMed ID: 11998841 [TBL] [Abstract][Full Text] [Related]
5. Enzymatic synthesis of amoxicillin via a one-pot enzymatic hydrolysis and condensation cascade process in the presence of organic co-solvents. Wu Q; Chen CX; Du LL; Lin XF Appl Biochem Biotechnol; 2010 Apr; 160(7):2026-35. PubMed ID: 19957210 [TBL] [Abstract][Full Text] [Related]
6. Highly efficient synthesis of ampicillin in an "aqueous solution-precipitate" system: repetitive addition of substrates in a semicontinuous process. Youshko MI; van Langen LM; de Vroom E; van Rantwijk F; Sheldon RA; Svedas VK Biotechnol Bioeng; 2001 Jun; 73(5):426-30. PubMed ID: 11320513 [TBL] [Abstract][Full Text] [Related]
7. Saturation mutagenesis reveals the importance of residues alphaR145 and alphaF146 of penicillin acylase in the synthesis of beta-lactam antibiotics. Jager SA; Shapovalova IV; Jekel PA; Alkema WB; Svedas VK; Janssen DB J Biotechnol; 2008 Jan; 133(1):18-26. PubMed ID: 17933411 [TBL] [Abstract][Full Text] [Related]
8. [Study of E. coli penicillin amidase. The pH dependence of the equilibrium constant of ampicillin enzymatic hydrolysis]. Margolin AL; Shviadas VIu; Nys PS; Kol'tsova EV; Savitskaia EM Antibiotiki; 1978 Feb; 23(2):114-8. PubMed ID: 24408 [TBL] [Abstract][Full Text] [Related]
9. Efficient cascade synthesis of ampicillin from penicillin G potassium salt using wild and mutant penicillin G acylase from Alcaligenes faecalis. Deng S; Ma X; Su E; Wei D J Biotechnol; 2016 Feb; 219():142-8. PubMed ID: 26732414 [TBL] [Abstract][Full Text] [Related]
10. Penicillin acylase-catalyzed ampicillin synthesis using a pH gradient: a new approach to optimization. Youshko MI; van Langen LM; de Vroom E; van Rantwijk F; Sheldon RA; Svedas VK Biotechnol Bioeng; 2002 Jun; 78(5):589-93. PubMed ID: 12115129 [TBL] [Abstract][Full Text] [Related]
11. Kinetics of ampicillin synthesis catalyzed by penicillin acylase from E. coli in homogeneous and heterogeneous systems. Quantitative characterization of nucleophile reactivity and mathematical modeling of the process. Youshko MI; Svedas VK Biochemistry (Mosc); 2000 Dec; 65(12):1367-75. PubMed ID: 11173507 [TBL] [Abstract][Full Text] [Related]
12. Enhanced Enzymatic Synthesis of a Cephalosporin, Cefadroclor, in the Presence of Organic Co-solvents. Liu K; Li S; Pang X; Xu Z; Li D; Xu H Appl Biochem Biotechnol; 2017 May; 182(1):29-40. PubMed ID: 27817045 [TBL] [Abstract][Full Text] [Related]
13. Kinetic studies on the mechanism of the penicillin amidase-catalysed synthesis of ampicillin and benzylpenicillin. Kasche V; Haufler U; Zöllner R Hoppe Seylers Z Physiol Chem; 1984 Dec; 365(12):1435-43. PubMed ID: 6098545 [TBL] [Abstract][Full Text] [Related]
14. Efficient synthesis of β-lactam antibiotics with in situ product removal by a newly isolated penicillin G acylase. Pan X; Li A; Peng Z; Ji X; Chu J; He B Bioorg Chem; 2020 Jun; 99():103765. PubMed ID: 32213361 [TBL] [Abstract][Full Text] [Related]
15. Crystal structures of penicillin acylase enzyme-substrate complexes: structural insights into the catalytic mechanism. McVey CE; Walsh MA; Dodson GG; Wilson KS; Brannigan JA J Mol Biol; 2001 Oct; 313(1):139-50. PubMed ID: 11601852 [TBL] [Abstract][Full Text] [Related]
16. Efficient biocatalyst for large-scale synthesis of cephalosporins, obtained by combining immobilization and site-directed mutagenesis of penicillin acylase. Cecchini DA; Pavesi R; Sanna S; Daly S; Xaiz R; Pregnolato M; Terreni M Appl Microbiol Biotechnol; 2012 Sep; 95(6):1491-500. PubMed ID: 22228258 [TBL] [Abstract][Full Text] [Related]
17. Biotechnological advances on penicillin G acylase: pharmaceutical implications, unique expression mechanism and production strategies. Srirangan K; Orr V; Akawi L; Westbrook A; Moo-Young M; Chou CP Biotechnol Adv; 2013 Dec; 31(8):1319-32. PubMed ID: 23721991 [TBL] [Abstract][Full Text] [Related]
18. Crosslinked penicillin acylase aggregates for synthesis of beta-lactam antibiotics in organic medium. Illanes A; Wilson L; Caballero E; Fernández-Lafuente R; Guisán JM Appl Biochem Biotechnol; 2006 Jun; 133(3):189-202. PubMed ID: 16720900 [TBL] [Abstract][Full Text] [Related]
19. Kinetically controlled semisynthesis of beta-lactam antibiotics and peptides. Kasche V; Haufler U; Riechmann L Ann N Y Acad Sci; 1984; 434():99-105. PubMed ID: 6098212 [No Abstract] [Full Text] [Related]
20. Biotechnological applications of penicillin acylases: state-of-the-art. Arroyo M; de la Mata I; Acebal C; Castillón MP Appl Microbiol Biotechnol; 2003 Jan; 60(5):507-14. PubMed ID: 12536249 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]