BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 2425848)

  • 1. The sodium cycle. I. Na+-dependent motility and modes of membrane energization in the marine alkalotolerant vibrio Alginolyticus.
    Dibrov PA; Kostryko VA; Lazarova RL; Skulachev VP; Smirnova IA
    Biochim Biophys Acta; 1986 Jul; 850(3):449-57. PubMed ID: 2425848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The role of Na+ ions in the respiration, formation of the membrane potential and movement of the alkali-resistant marine bacterium Vibrio alginolyticus].
    Dibrov PA; Kostyrko VA; Lazarova RL; Skulachev VP; Smirnova IA
    Biokhimiia; 1987 Jan; 52(1):15-23. PubMed ID: 3814650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The sodium cycle. II. Na+-coupled oxidative phosphorylation in Vibrio alginolyticus cells.
    Dibrov PA; Lazarova RL; Skulachev VP; Verkhovskaya ML
    Biochim Biophys Acta; 1986 Jul; 850(3):458-65. PubMed ID: 2942186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of Na+ electrochemical potential by the Na+-motive NADH oxidase and Na+/H+ antiport system of a moderately halophilic Vibrio costicola.
    Udagawa T; Unemoto T; Tokuda H
    J Biol Chem; 1986 Feb; 261(6):2616-22. PubMed ID: 3005258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-dependent delta mu Na-generation and utilization in the marine cyanobacterium Oscillatoria brevis.
    Brown II; Fadeyev SI; Kirik II; Severina II; Skulachev VP
    FEBS Lett; 1990 Sep; 270(1-2):203-6. PubMed ID: 2171990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solubilization and reconstitution of the Na+-motive NADH oxidase activity from the marine bacterium Vibrio alginolyticus.
    Tokuda H
    FEBS Lett; 1984 Oct; 176(1):125-8. PubMed ID: 6092131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The ATP-driven primary Na+ pump in subcellular vesicles of Vibrio alginolyticus.
    Dibrov PA; Skulachev VP; Sokolov MV; Verkhovskaya ML
    FEBS Lett; 1988 Jun; 233(2):355-8. PubMed ID: 2968282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The H(+)-motive and Na(+)-motive respiratory chains in Bacillus FTU subcellular vesicles.
    Kostyrko VA; Semeykina AL; Skulachev VP; Smirnova IA; Vaghina ML; Verkhovskaya ML
    Eur J Biochem; 1991 Jun; 198(2):527-34. PubMed ID: 1645662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of rates of H+, Na+ and K+ transport across phospholipid vesicular membrane by the combined action of carbonyl cyanide m-chlorophenylhydrazone and valinomycin: temperature-jump studies.
    Prabhananda BS; Kombrabail MH
    Biochim Biophys Acta; 1995 May; 1235(2):323-35. PubMed ID: 7756342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity of some marine bacteria, a moderate halophile, and Escherichia coli to uncouplers at alkaline pH.
    MacLeod RA; Wisse GA; Stejskal FL
    J Bacteriol; 1988 Sep; 170(9):4330-7. PubMed ID: 3045092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A primary respiratory Na+ pump of an anaerobic bacterium: the Na+-dependent NADH:quinone oxidoreductase of Klebsiella pneumoniae.
    Dimroth P; Thomer A
    Arch Microbiol; 1989; 151(5):439-44. PubMed ID: 2545175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Presence of a Na+-stimulated P-type ATPase in the plasma membrane of the alkaliphilic halotolerant cyanobacterium Aphanothece halophytica.
    Wiangnon K; Raksajit W; Incharoensakdi A
    FEMS Microbiol Lett; 2007 May; 270(1):139-45. PubMed ID: 17302934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Respiratory-driven Na+ electrical potential in the bacterium Vitreoscilla.
    Efiok BJ; Webster DA
    Biochemistry; 1990 May; 29(19):4734-9. PubMed ID: 2372555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of the electrochemical potential of Na+ by the Na+-motive NADH oxidase in inverted membrane vesicles of Vibrio alginolyticus.
    Tokuda H; Udagawa T; Unemoto T
    FEBS Lett; 1985 Apr; 183(1):95-8. PubMed ID: 2579856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Na+-motive terminal oxidase activity in an alkalo- and halo-tolerant Bacillus.
    Semeykina AL; Skulachev VP; Verkhovskaya ML; Bulygina ES; Chumakov KM
    Eur J Biochem; 1989 Aug; 183(3):671-8. PubMed ID: 2776760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of the respiratory Na+ pump in bioenergetics of Vibrio alginolyticus.
    Tokuda H; Asano M; Shimamura Y; Unemoto T; Sugiyama S; Imae Y
    J Biochem; 1988 Apr; 103(4):650-5. PubMed ID: 3170506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence quenching studies on the characterization of energy generated at the NADH:quinone oxidoreductase and quinol oxidase segments of marine bacteria.
    Kim YJ; Mizushima S; Tokuda H
    J Biochem; 1991 Apr; 109(4):616-21. PubMed ID: 1907969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Na+ is translocated at NADH:quinone oxidoreductase segment in the respiratory chain of Vibrio alginolyticus.
    Tokuda H; Unemoto T
    J Biol Chem; 1984 Jun; 259(12):7785-90. PubMed ID: 6736026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of protonic and sodium potentials in the motility of E. coli and Bacillus FTU.
    Bogachev AV; Murtasina RA; Shestopalov AI; Skulachev VP
    Biochim Biophys Acta; 1993 May; 1142(3):321-6. PubMed ID: 8386939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptation of Bacillus FTU and Escherichia coli to alkaline conditions: the Na(+)-motive respiration.
    Avetisyan AV; Dibrov PA; Semeykina AL; Skulachev VP; Sokolov MV
    Biochim Biophys Acta; 1991 Dec; 1098(1):95-104. PubMed ID: 1751551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.