These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 2425848)
1. The sodium cycle. I. Na+-dependent motility and modes of membrane energization in the marine alkalotolerant vibrio Alginolyticus. Dibrov PA; Kostryko VA; Lazarova RL; Skulachev VP; Smirnova IA Biochim Biophys Acta; 1986 Jul; 850(3):449-57. PubMed ID: 2425848 [TBL] [Abstract][Full Text] [Related]
2. [The role of Na+ ions in the respiration, formation of the membrane potential and movement of the alkali-resistant marine bacterium Vibrio alginolyticus]. Dibrov PA; Kostyrko VA; Lazarova RL; Skulachev VP; Smirnova IA Biokhimiia; 1987 Jan; 52(1):15-23. PubMed ID: 3814650 [TBL] [Abstract][Full Text] [Related]
3. The sodium cycle. II. Na+-coupled oxidative phosphorylation in Vibrio alginolyticus cells. Dibrov PA; Lazarova RL; Skulachev VP; Verkhovskaya ML Biochim Biophys Acta; 1986 Jul; 850(3):458-65. PubMed ID: 2942186 [TBL] [Abstract][Full Text] [Related]
4. Generation of Na+ electrochemical potential by the Na+-motive NADH oxidase and Na+/H+ antiport system of a moderately halophilic Vibrio costicola. Udagawa T; Unemoto T; Tokuda H J Biol Chem; 1986 Feb; 261(6):2616-22. PubMed ID: 3005258 [TBL] [Abstract][Full Text] [Related]
5. Light-dependent delta mu Na-generation and utilization in the marine cyanobacterium Oscillatoria brevis. Brown II; Fadeyev SI; Kirik II; Severina II; Skulachev VP FEBS Lett; 1990 Sep; 270(1-2):203-6. PubMed ID: 2171990 [TBL] [Abstract][Full Text] [Related]
6. Solubilization and reconstitution of the Na+-motive NADH oxidase activity from the marine bacterium Vibrio alginolyticus. Tokuda H FEBS Lett; 1984 Oct; 176(1):125-8. PubMed ID: 6092131 [TBL] [Abstract][Full Text] [Related]
7. The ATP-driven primary Na+ pump in subcellular vesicles of Vibrio alginolyticus. Dibrov PA; Skulachev VP; Sokolov MV; Verkhovskaya ML FEBS Lett; 1988 Jun; 233(2):355-8. PubMed ID: 2968282 [TBL] [Abstract][Full Text] [Related]
8. The H(+)-motive and Na(+)-motive respiratory chains in Bacillus FTU subcellular vesicles. Kostyrko VA; Semeykina AL; Skulachev VP; Smirnova IA; Vaghina ML; Verkhovskaya ML Eur J Biochem; 1991 Jun; 198(2):527-34. PubMed ID: 1645662 [TBL] [Abstract][Full Text] [Related]
9. Enhancement of rates of H+, Na+ and K+ transport across phospholipid vesicular membrane by the combined action of carbonyl cyanide m-chlorophenylhydrazone and valinomycin: temperature-jump studies. Prabhananda BS; Kombrabail MH Biochim Biophys Acta; 1995 May; 1235(2):323-35. PubMed ID: 7756342 [TBL] [Abstract][Full Text] [Related]
10. Sensitivity of some marine bacteria, a moderate halophile, and Escherichia coli to uncouplers at alkaline pH. MacLeod RA; Wisse GA; Stejskal FL J Bacteriol; 1988 Sep; 170(9):4330-7. PubMed ID: 3045092 [TBL] [Abstract][Full Text] [Related]
11. A primary respiratory Na+ pump of an anaerobic bacterium: the Na+-dependent NADH:quinone oxidoreductase of Klebsiella pneumoniae. Dimroth P; Thomer A Arch Microbiol; 1989; 151(5):439-44. PubMed ID: 2545175 [TBL] [Abstract][Full Text] [Related]
12. Presence of a Na+-stimulated P-type ATPase in the plasma membrane of the alkaliphilic halotolerant cyanobacterium Aphanothece halophytica. Wiangnon K; Raksajit W; Incharoensakdi A FEMS Microbiol Lett; 2007 May; 270(1):139-45. PubMed ID: 17302934 [TBL] [Abstract][Full Text] [Related]
13. Respiratory-driven Na+ electrical potential in the bacterium Vitreoscilla. Efiok BJ; Webster DA Biochemistry; 1990 May; 29(19):4734-9. PubMed ID: 2372555 [TBL] [Abstract][Full Text] [Related]
14. Generation of the electrochemical potential of Na+ by the Na+-motive NADH oxidase in inverted membrane vesicles of Vibrio alginolyticus. Tokuda H; Udagawa T; Unemoto T FEBS Lett; 1985 Apr; 183(1):95-8. PubMed ID: 2579856 [TBL] [Abstract][Full Text] [Related]
15. The Na+-motive terminal oxidase activity in an alkalo- and halo-tolerant Bacillus. Semeykina AL; Skulachev VP; Verkhovskaya ML; Bulygina ES; Chumakov KM Eur J Biochem; 1989 Aug; 183(3):671-8. PubMed ID: 2776760 [TBL] [Abstract][Full Text] [Related]
16. Roles of the respiratory Na+ pump in bioenergetics of Vibrio alginolyticus. Tokuda H; Asano M; Shimamura Y; Unemoto T; Sugiyama S; Imae Y J Biochem; 1988 Apr; 103(4):650-5. PubMed ID: 3170506 [TBL] [Abstract][Full Text] [Related]
17. Fluorescence quenching studies on the characterization of energy generated at the NADH:quinone oxidoreductase and quinol oxidase segments of marine bacteria. Kim YJ; Mizushima S; Tokuda H J Biochem; 1991 Apr; 109(4):616-21. PubMed ID: 1907969 [TBL] [Abstract][Full Text] [Related]
18. Na+ is translocated at NADH:quinone oxidoreductase segment in the respiratory chain of Vibrio alginolyticus. Tokuda H; Unemoto T J Biol Chem; 1984 Jun; 259(12):7785-90. PubMed ID: 6736026 [TBL] [Abstract][Full Text] [Related]
19. The role of protonic and sodium potentials in the motility of E. coli and Bacillus FTU. Bogachev AV; Murtasina RA; Shestopalov AI; Skulachev VP Biochim Biophys Acta; 1993 May; 1142(3):321-6. PubMed ID: 8386939 [TBL] [Abstract][Full Text] [Related]
20. Adaptation of Bacillus FTU and Escherichia coli to alkaline conditions: the Na(+)-motive respiration. Avetisyan AV; Dibrov PA; Semeykina AL; Skulachev VP; Sokolov MV Biochim Biophys Acta; 1991 Dec; 1098(1):95-104. PubMed ID: 1751551 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]