These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 24258513)

  • 1. Conversion of 1-aminocyclopropane-1-carboxylic acid to ethylene by isolated vacuoles of Pisum sativum L.
    Guy M; Kende H
    Planta; 1984 Mar; 160(3):281-7. PubMed ID: 24258513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of the conversion of 1-amino-2-ethylcyclopropane-1-carboxylic acid stereoisomers to 1-butene by pea epicotyls and by a cell-free system.
    McKeon TA; Shang Fa Yang
    Planta; 1984 Jan; 160(1):84-7. PubMed ID: 24258376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ethylene formation in Pisum sativum and Vicia faba protoplasts.
    Guy M; Kende H
    Planta; 1984 Mar; 160(3):276-80. PubMed ID: 24258512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 1-Aminocyclopropane-1-carboxylic-acid-dependent ethylene production during re-formation of vacuoles in evacuolated protoplasts of Petunia hybrida.
    Erdmann H; Griesbach RJ; Lawson RH; Mattoo AK
    Planta; 1989 Sep; 179(2):196-202. PubMed ID: 24201518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethylene formation from 1-aminocyclopropane-1-carboxylic acid in homogenates of etiolated pea seedlings.
    Konze JR; Kende H
    Planta; 1979 Jan; 146(3):293-301. PubMed ID: 24318182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subcellular localization of the sites of conversion of 1-aminocyclopropane-1-carboxylic acid into ethylene in plant cells.
    Bouzayen M; Latché A; Pech JC
    Planta; 1990 Jan; 180(2):175-80. PubMed ID: 24201941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auxin-induced ethylene biosynthesis in subapical stem sections of etiolated seedlings of Pisum sativum L.
    Jones JF; Kende H
    Planta; 1979 Oct; 146(5):649-56. PubMed ID: 24318341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Apical localization of 1-aminocyclopropane-1-carboxylic acid and its conversion to ethylene in etiolated pea seedlings.
    Taylor JE; Grosskopf DG; McGaw BA; Horgan R; Scott IM
    Planta; 1988 Apr; 174(1):112-4. PubMed ID: 24221426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production and Release of Ethylene from 1-aminocyclopropane-1-carboxylic Acid in Lemna minor L. in the Dark and at Different Carbon Dioxide Compensation Concentrations.
    Fuhrer J
    J Plant Physiol; 1985 Jan; 117(4):307-17. PubMed ID: 23195798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light inhibition of the conversion of 1-aminocyclopropane-1-carboxylic acid to ethylene in leaves is mediated through carbon dioxide.
    Kao CH; Yang SF
    Planta; 1982 Aug; 155(3):261-6. PubMed ID: 24271776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bicarbonate/CO(2)-Facilitated Conversion of 1-Amino-cyclopropane-1-carboxylic Acid to Ethylene in Model Systems and Intact Tissues.
    McRae DG; Coker JA; Legge RL; Thompson JE
    Plant Physiol; 1983 Nov; 73(3):784-90. PubMed ID: 16663301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The physiological role of lipoxygenase in ethylene formation from 1-aminocyclopropane-1-carboxylic acid in oat leaves.
    Wang TT; Yang SF
    Planta; 1987 Feb; 170(2):190-6. PubMed ID: 24232877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The modulation of the conversion of l-aminocyclopropane-l-carboxylic acid to ethylene by light.
    de Laat AM; Brandenburg DC; van Loon LC
    Planta; 1981 Nov; 153(3):193-200. PubMed ID: 24276821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapidly induced ethylene formation after wounding is controlled by the regulation of 1-aminocyclopropane-1-carboxylic acid synthesis.
    Konze JR; Kwiatkowski GM
    Planta; 1981 Apr; 151(4):327-30. PubMed ID: 24301974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ethylene formation from 1-aminocyclopropane-1-carboxylic acid by microsomal membranes from senescing carnation flowers.
    Mayak S; Legge RL; Thompson JE
    Planta; 1981 Oct; 153(1):49-55. PubMed ID: 24276706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-free ethylene-forming systems lack stereochemical fidelity.
    Venis MA
    Planta; 1984 Sep; 162(1):85-8. PubMed ID: 24253951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potamogeton pectinatus Is Constitutively Incapable of Synthesizing Ethylene and Lacks 1-Aminocyclopropane-1-Carboxylic Acid Oxidase.
    Summers JE; Voesenek L; Blom C; Lewis MJ; Jackson MB
    Plant Physiol; 1996 Jul; 111(3):901-908. PubMed ID: 12226336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethylene biosynthesis: Identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene.
    Adams DO; Yang SF
    Proc Natl Acad Sci U S A; 1979 Jan; 76(1):170-4. PubMed ID: 16592605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipoxygenase-generated hydroperoxides account for the nonphysiological features of ethylene formation from 1-aminocyclopropane-1-carboxylic acid by microsomal membranes of carnations.
    Lynch DV; Sridhara S; Thompson JE
    Planta; 1985 May; 164(1):121-5. PubMed ID: 24249510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of cyanide from carbon 1 of 1-aminocyclopropane-1-carboxylic acid during its conversion to ethylene.
    Peiser GD; Wang TT; Hoffman NE; Yang SF; Liu HW; Walsh CT
    Proc Natl Acad Sci U S A; 1984 May; 81(10):3059-63. PubMed ID: 16593463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.