These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 24258530)

  • 1. Preferred directions of arm movements are independent of visual perception of spatial directions.
    Dounskaia N; Wang W; Sainburg RL; Przybyla A
    Exp Brain Res; 2014 Feb; 232(2):575-86. PubMed ID: 24258530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of workspace constraints on directional preferences of 3D arm movements.
    Wang W; Dounskaia N
    Exp Brain Res; 2015 Jul; 233(7):2141-53. PubMed ID: 25912607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Load emphasizes muscle effort minimization during selection of arm movement direction.
    Wang W; Dounskaia N
    J Neuroeng Rehabil; 2012 Oct; 9():70. PubMed ID: 23035925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interlimb differences of directional biases for stroke production.
    Wang W; Johnson T; Sainburg RL; Dounskaia N
    Exp Brain Res; 2012 Jan; 216(2):263-74. PubMed ID: 22076406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of vision, speed, and attention in overcoming directional biases during arm movements.
    Dounskaia N; Goble JA
    Exp Brain Res; 2011 Mar; 209(2):299-309. PubMed ID: 21279334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural control of arm movements reveals a tendency to use gravity to simplify joint coordination rather than to decrease muscle effort.
    Wang W; Dounskaia N
    Neuroscience; 2016 Dec; 339():418-432. PubMed ID: 27751958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A preferred pattern of joint coordination during arm movements with redundant degrees of freedom.
    Dounskaia N; Wang W
    J Neurophysiol; 2014 Sep; 112(5):1040-53. PubMed ID: 24872537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in control of limb dynamics during dominant and nondominant arm reaching.
    Sainburg RL; Kalakanis D
    J Neurophysiol; 2000 May; 83(5):2661-75. PubMed ID: 10805666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of reference frames for movement planning in peripersonal space representation.
    Ghafouri M; Lestienne FG
    Exp Brain Res; 2006 Feb; 169(1):24-36. PubMed ID: 16261340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for a dynamic-dominance hypothesis of handedness.
    Sainburg RL
    Exp Brain Res; 2002 Jan; 142(2):241-58. PubMed ID: 11807578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directional biases reveal utilization of arm's biomechanical properties for optimization of motor behavior.
    Goble JA; Zhang Y; Shimansky Y; Sharma S; Dounskaia NV
    J Neurophysiol; 2007 Sep; 98(3):1240-52. PubMed ID: 17625062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of intrinsic factors in control of arm movement direction: implications from directional preferences.
    Dounskaia N; Goble JA; Wang W
    J Neurophysiol; 2011 Mar; 105(3):999-1010. PubMed ID: 21123658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient control of arm movements in advanced age.
    Lee G; Fradet L; Ketcham CJ; Dounskaia N
    Exp Brain Res; 2007 Feb; 177(1):78-94. PubMed ID: 16944112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interlimb transfer of visuomotor rotations: independence of direction and final position information.
    Sainburg RL; Wang J
    Exp Brain Res; 2002 Aug; 145(4):437-47. PubMed ID: 12172655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual gravity influences arm movement planning.
    Sciutti A; Demougeot L; Berret B; Toma S; Sandini G; Papaxanthis C; Pozzo T
    J Neurophysiol; 2012 Jun; 107(12):3433-45. PubMed ID: 22442569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immediate compensation for variations in self-generated Coriolis torques related to body dynamics and carried objects.
    Pigeon P; Dizio P; Lackner JR
    J Neurophysiol; 2013 Sep; 110(6):1370-84. PubMed ID: 23803330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computational model for redundant human three-dimensional pointing movements: integration of independent spatial and temporal motor plans simplifies movement dynamics.
    Biess A; Liebermann DG; Flash T
    J Neurosci; 2007 Nov; 27(48):13045-64. PubMed ID: 18045899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The leading joint hypothesis for spatial reaching arm motions.
    Ambike S; Schmiedeler JP
    Exp Brain Res; 2013 Feb; 224(4):591-603. PubMed ID: 23229774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reaching movements with similar hand paths but different arm orientations. I. Activity of individual cells in motor cortex.
    Scott SH; Kalaska JF
    J Neurophysiol; 1997 Feb; 77(2):826-52. PubMed ID: 9065853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of altering initial position on movement direction and extent.
    Sainburg RL; Lateiner JE; Latash ML; Bagesteiro LB
    J Neurophysiol; 2003 Jan; 89(1):401-15. PubMed ID: 12522189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.