These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 24258668)

  • 1. Isolation of biochemical mutants using haploid mesophyll protosplasts of Hyoscyamus muticus : IV. Biochemical characterisation of nitrate non-utilizing clones.
    Fankhauser H; Bucher F; King PJ
    Planta; 1984 Apr; 160(5):415-21. PubMed ID: 24258668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation of biochemical mutants using haploid mesophyll protoplasts of Hyoscyamus muticus : I. A NO 3 (-) non-utilizing clone.
    Strauss A; Bucher F; King PJ
    Planta; 1981 Oct; 153(1):75-80. PubMed ID: 24276709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation of biochemical mutants using haploid mesophyll protoplasts of Hyoscyamus muticus : II. Auxotrophic and temperature-sensitive clones.
    Gebhardt C; Schnebli V; King PJ
    Planta; 1981 Oct; 153(1):81-9. PubMed ID: 24276710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical and genetical characterization of nitrate reductase deficient mutants of Petunia.
    Steffen A; Schieder O
    Plant Cell Rep; 1984 Aug; 3(4):134-7. PubMed ID: 24253469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and characterization of Nicotiana plumbaginifolia nitrate reductase-deficient mutants: genetic and biochemical analysis of the NIA complementation group.
    Gabard J; Marion-Poll A; Chérel I; Meyer C; Müller A; Caboche M
    Mol Gen Genet; 1987 Oct; 209(3):596-606. PubMed ID: 17193714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of nitrate reductase-deficient mutants of Arabidopsis thaliana.
    Braaksma FJ; Feenstra WJ
    Theor Appl Genet; 1982 Mar; 64(1):83-90. PubMed ID: 24264829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical characterization of the molybdenum cofactor mutants of Neurospora crassa: in vivo and in vitro reconstitution of NADPH-nitrate reductase activity.
    Dunn-Coleman NS
    Curr Genet; 1984 Oct; 8(8):581-8. PubMed ID: 24177997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regeneration of fully nitrate reductase - deficient mutants from protoplast culture of Nicotiana plumbaginifolia (Viviani).
    Negrutiu I; Dirks R; Jacobs M
    Theor Appl Genet; 1983 Sep; 66(3-4):341-7. PubMed ID: 24263936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyoscyamus muticus + Nicotiana tabacum fusion hybrids selected via auxotroph complementation.
    Potrykus I; Jia J; Lazar GB; Saul M
    Plant Cell Rep; 1984 Apr; 3(2):68-71. PubMed ID: 24253396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repair in vitro of nitrate reductase-deficient tobacco mutants (cnxA) by molybdate and by molybdenum cofactor.
    Mendel RR; Müller AJ
    Planta; 1985 Mar; 163(3):370-5. PubMed ID: 24249408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative transfer of the molybdenum cofactor from xanthine oxidase and from sulphite oxidase to the deficient enzyme of the nit-1 mutant of Neurospora crassa to yield active nitrate reductase.
    Hawkes TR; Bray RC
    Biochem J; 1984 Apr; 219(2):481-93. PubMed ID: 6234882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a mutant of Chlamydomonas reinhardtii deficient in the molybdenum cofactor.
    Li W; Fingrut DR; Maxwell DP
    Physiol Plant; 2009 Jul; 136(3):336-50. PubMed ID: 19470097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molybdenum cofactor in chlorate-resistant and nitrate reductase-deficient insertion mutants of Escherichia coli.
    Miller JB; Amy NK
    J Bacteriol; 1983 Aug; 155(2):793-801. PubMed ID: 6307982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro assembly of Neurospora assimilatory nitrate reductase from protein subunits of a Neurospora mutant and the xanthine oxidizing or aldehyde oxidase systems of higher animals.
    Ketchum PA; Cambier HY; Frazier WA; Madansky CH; Nason A
    Proc Natl Acad Sci U S A; 1970 Jul; 66(3):1016-23. PubMed ID: 4393266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrate Utilization by Nitrate Reductase-deficient Barley Mutants.
    Warner RL
    Plant Physiol; 1981 Apr; 67(4):740-3. PubMed ID: 16661746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of biochemical mutants using haploid mesophyll protoplasts ofHyoscyamus muticus : III. General characterisation of histidine and tryptophan auxotrophs.
    Gebhardt C; Shimamoto K; Lázár G; Schnebli V; King PJ
    Planta; 1983 Jan; 159(1):18-24. PubMed ID: 24258081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the molybdenum cofactor in chlorate-resistant mutants of Escherichia coli.
    Amy NK
    J Bacteriol; 1981 Oct; 148(1):274-82. PubMed ID: 7026535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical and genetic comparison of two nitrate reductase-deficient pea mutants disturbed in the cofactor.
    Jacobsen E; Schaart JG; Warner RL
    Biochem Genet; 1987 Feb; 25(1-2):143-51. PubMed ID: 3472518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrate reductase deficient cell lines from diploid cell cultures and lethal mutant M2 plants of Arabidopsis thaliana.
    Scholten HJ; de Vries SE; Nijdam H; Feenstra WJ
    Theor Appl Genet; 1985 Dec; 71(3):556-62. PubMed ID: 24247470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activity of the molybdopterin-containing xanthine dehydrogenase of Rhodobacter capsulatus can be restored by high molybdenum concentrations in a moeA mutant defective in molybdenum cofactor biosynthesis.
    Leimkühler S; Angermüller S; Schwarz G; Mendel RR; Klipp W
    J Bacteriol; 1999 Oct; 181(19):5930-9. PubMed ID: 10498704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.