These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 24258674)

  • 21. Internode length in Pisum : A new, slender mutant with elevated levels of C19 gibberellins.
    Reid JB; Ross JJ; Swain SM
    Planta; 1992 Nov; 188(4):462-7. PubMed ID: 24178376
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Internode Length in Pisum: Gene na May Block Gibberellin Synthesis between ent-7alpha-Hydroxykaurenoic Acid and Gibberellin A(12)-Aldehyde.
    Ingram TJ; Reid JB
    Plant Physiol; 1987 Apr; 83(4):1048-53. PubMed ID: 16665322
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gibberellin 3-oxidase gene expression patterns influence gibberellin biosynthesis, growth, and development in pea.
    Reinecke DM; Wickramarathna AD; Ozga JA; Kurepin LV; Jin AL; Good AG; Pharis RP
    Plant Physiol; 2013 Oct; 163(2):929-45. PubMed ID: 23979969
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of the growth retardant LAB 198 999, an acylcyclohexanedione compound, on epicotyl elongation and metabolism of gibberellins A1 and A 20 in cowpea.
    Martínez-García JF; García-Martínez JL
    Planta; 1992 Sep; 188(2):245-51. PubMed ID: 24178261
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Gibberellin Status of lip1, a Mutant of Pea That Exhibits Light-Independent Photomorphogenesis.
    Sponsel VM; Ross JJ; Reynolds MR; Symons GM; Reid JB
    Plant Physiol; 1996 Sep; 112(1):61-66. PubMed ID: 12226373
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of the Growth Retardant 3,5-Dioxo-4-butyryl-cyclohexane Carboxylic Acid Ethyl Ester, an Acylcyclohexanedione Compound, on Fruit Growth and Gibberellin Content of Pollinated and Unpollinated Ovaries in Pea.
    Santes CM; Garcia-Martinez JL
    Plant Physiol; 1995 Jun; 108(2):517-523. PubMed ID: 12228489
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ontogenetic variation in levels of gibberellin A1 in Pisum : Implications for the control of stem elongation.
    Ross JJ; Reid JB; Dungey HS
    Planta; 1992 Jan; 186(2):166-71. PubMed ID: 24186655
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conversion of gibberellin A20 to gibberellins A 1 and A 5 in a cell-free system from Phaseolus vulgaris.
    Kamiya Y; Takahashi M; Takahashi N; Graebe JE
    Planta; 1984 Sep; 162(2):154-8. PubMed ID: 24254050
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification, quantitation and distribution of gibberellins in fruits of Pisum sativum L. cv. Alaska during pod development.
    García-Martinez JL; Santes C; Croker SJ; Hedden P
    Planta; 1991 Apr; 184(1):53-60. PubMed ID: 24193929
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolism of [(3)H]Gibberellin A 20 by plants of Bryophyllum daigremontianum under long- and short-day conditions.
    Durley RC; Pharis RP; Zeevaart JA
    Planta; 1975 Jan; 126(2):139-49. PubMed ID: 24430156
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mendel's dwarfing gene: cDNAs from the Le alleles and function of the expressed proteins.
    Martin DN; Proebsting WM; Hedden P
    Proc Natl Acad Sci U S A; 1997 Aug; 94(16):8907-11. PubMed ID: 9238076
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gibberellins and leaf expansion in near-isogenic wheat lines containing Rht1 and Rht3 dwarfing alleles.
    Appleford NE; Lenton JR
    Planta; 1991 Jan; 183(2):229-36. PubMed ID: 24193625
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolism of gibberellins in a cell-free system from immature seeds of Phaseolus vulgaris L.
    Takahashi M; Kamiya Y; Takahashi N; Graebe JE
    Planta; 1986 Jun; 168(2):190-9. PubMed ID: 24232021
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gibberellin biosynthesis from gibberellin A12-aldehyde in a cell-free system from germinating barley (Hordeum vulgare L., cv. Himalaya) embryos.
    Großelindemann E; Lewis MJ; Hedden P; Graebe JE
    Planta; 1992 Sep; 188(2):252-7. PubMed ID: 24178262
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of Gibberellin Biosynthesis Inhibitors on Native Gibberellin Content, Growth and Floral Initiation in Sorghum bicolor.
    Lee I; Foster KR; Morgan PW
    J Plant Growth Regul; 1998 Dec; 17(4):185-195. PubMed ID: 9892741
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gibberellin Metabolism in Intact Plants of Raphanus sativus L.
    Nishijima T; Koshioka M; Yamazaki H; Mander LN
    Biosci Biotechnol Biochem; 1997 Jan; 61(10):1763-5. PubMed ID: 27393175
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Decapitation Reduces the Metabolism of Gibberellin A20 to A1 in Pisum sativum L., Decreasing the Le/le Difference.
    Sherriff LJ; McKay MJ; Ross JJ; Reid JB; Willis CL
    Plant Physiol; 1994 Jan; 104(1):277-280. PubMed ID: 12232079
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence that auxin promotes gibberellin A1 biosynthesis in pea.
    Ross JJ; O'Neill DP; Smith JJ; Kerckhoffs LH; Elliott RC
    Plant J; 2000 Mar; 21(6):547-52. PubMed ID: 10758505
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Internode length in pisum: do the internode length genes effect growth in dark-grown plants?
    Reid JB
    Plant Physiol; 1983 Jul; 72(3):759-63. PubMed ID: 16663081
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gibberellin A(1) Biosynthesis in Pisum sativum L. : II. Biological and Biochemical Consequences of the le Mutation.
    Smith VA
    Plant Physiol; 1992 Jun; 99(2):372-7. PubMed ID: 16668893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.