These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 24259258)

  • 1. Masters of change: seasonal plasticity in the prey-capture behavior of the Alpine newt Ichthyosaura alpestris (Salamandridae).
    Heiss E; Aerts P; Van Wassenbergh S
    J Exp Biol; 2013 Dec; 216(Pt 23):4426-34. PubMed ID: 24259258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Musculoskeletal architecture of the prey capture apparatus in salamandrid newts with multiphasic lifestyle: does anatomy change during the seasonal habitat switches?
    Heiss E; Handschuh S; Aerts P; Van Wassenbergh S
    J Anat; 2016 May; 228(5):757-70. PubMed ID: 26892189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexibility is everything: prey capture throughout the seasonal habitat switches in the smooth newt
    Heiss E; Aerts P; Van Wassenbergh S
    Org Divers Evol; 2015; 15(1):127-142. PubMed ID: 26097413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the amphibious food uptake and prey manipulation behavior in the Balkan-Anatolian crested newt (Triturus ivanbureschi, Arntzen and Wielstra, 2013).
    Lukanov S; Tzankov N; Handschuh S; Heiss E; Naumov B; Natchev N
    Zoology (Jena); 2016 Jun; 119(3):224-231. PubMed ID: 27013264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dining dichotomy: aquatic and terrestrial prey capture behavior in the Himalayan newt Tylototriton verrucosus.
    Heiss E; De Vylder M
    Biol Open; 2016 Oct; 5(10):1500-1507. PubMed ID: 27612510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenotypic flexibility of gape anatomy fine-tunes the aquatic prey-capture system of newts.
    Van Wassenbergh S; Heiss E
    Sci Rep; 2016 Jul; 6():29277. PubMed ID: 27383663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional morphology of terrestrial prey capture in salamandrid salamanders.
    Stinson CM; Deban SM
    J Exp Biol; 2017 Nov; 220(Pt 21):3896-3907. PubMed ID: 29093187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanics and hydrodynamics of prey capture in the Chinese giant salamander reveal a high-performance jaw-powered suction feeding mechanism.
    Heiss E; Natchev N; Gumpenberger M; Weissenbacher A; Van Wassenbergh S
    J R Soc Interface; 2013 May; 10(82):20121028. PubMed ID: 23466557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinematics of aquatic and terrestrial prey capture in Terrapene carolina, with implications for the evolution of feeding in cryptodire turtles.
    Summers AP; Darouian KF; Richmond AM; Brainerd EL
    J Exp Zool; 1998 Jul; 281(4):280-7. PubMed ID: 9658591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The metamorphosis of feeding kinematics in Salamandra salamandra and the evolution of terrestrial feeding behavior.
    Reilly S
    J Exp Biol; 1996; 199(Pt 5):1219-27. PubMed ID: 9319073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparisons of aquatic versus terrestrial predatory strikes in the pitviper, Agkistrodon piscivorus.
    Vincent SE; Herrel A; Irschick DJ
    J Exp Zool A Comp Exp Biol; 2005 Jun; 303(6):476-88. PubMed ID: 15880763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AQUATIC PREY TRANSPORT AND THE COMPARATIVE KINEMATICS OF AMBYSTOMA TIGRINUM FEEDING BEHAVIORS.
    Gillis G; Lauder G
    J Exp Biol; 1994 Feb; 187(1):159-79. PubMed ID: 9317549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beyond Suction-Feeding Fishes: Identifying New Approaches to Performance Integration During Prey Capture in Aquatic Vertebrates.
    Kane EA; Cohen HE; Hicks WR; Mahoney ER; Marshall CD
    Integr Comp Biol; 2019 Aug; 59(2):456-472. PubMed ID: 31225594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fish that uses its hydrodynamic tongue to feed on land.
    Michel KB; Heiss E; Aerts P; Van Wassenbergh S
    Proc Biol Sci; 2015 Apr; 282(1805):. PubMed ID: 25788596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinematics of feeding in bluegill sunfish: is there a general distinction between aquatic capture and transport behaviors?
    Gillis G; Lauder G
    J Exp Biol; 1995; 198(Pt 3):709-20. PubMed ID: 9318463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexibility of intraoral food processing in the salamandrid newt
    Schwarz D; Gorb SN; Kovalev A; Konow N; Heiss E
    J Exp Biol; 2020 Nov; 223(Pt 21):. PubMed ID: 32968002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ontogenetic plasticity in cranial morphology is associated with a change in the food processing behavior in Alpine newts.
    Schwarz D; Konow N; Porro LB; Heiss E
    Front Zool; 2020 Nov; 17(1):34. PubMed ID: 33292303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aquatic feeding in pipid frogs: the use of suction for prey capture.
    Carreño CA; Nishikawa KC
    J Exp Biol; 2010 Jun; 213(Pt 12):2001-8. PubMed ID: 20511513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trophic specialisations in alternative heterochronic morphs.
    Denoël M; Schabetsberger R; Joly P
    Naturwissenschaften; 2004 Feb; 91(2):81-4. PubMed ID: 14991145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environment-dependent prey capture in the Atlantic mudskipper (Periophthalmus barbarus).
    Michel KB; Aerts P; Van Wassenbergh S
    Biol Open; 2016 Nov; 5(11):1735-1742. PubMed ID: 27765755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.