These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 24259303)

  • 21. Formic acid as a sacrificial agent for byproduct suppression in glucose dehydration to 5-hydroxymethylfurfural using NaY zeolite catalyst.
    Boonyoung P; Thongratkaew S; Rungtaweevoranit B; Pengsawang A; Praserthdam P; Sanpitakseree C; Faungnawakij K
    Bioresour Technol; 2024 Jan; 392():130010. PubMed ID: 37952589
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of an Iridium-Based Catalyst for High-Pressure Evolution of Hydrogen from Formic Acid.
    Iguchi M; Himeda Y; Manaka Y; Kawanami H
    ChemSusChem; 2016 Oct; 9(19):2749-2753. PubMed ID: 27530918
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Zinc-assisted hydrodeoxygenation of biomass-derived 5-hydroxymethylfurfural to 2,5-dimethylfuran.
    Saha B; Bohn CM; Abu-Omar MM
    ChemSusChem; 2014 Nov; 7(11):3095-101. PubMed ID: 25187223
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Monodisperse gold-palladium alloy nanoparticles and their composition-controlled catalysis in formic acid dehydrogenation under mild conditions.
    Metin Ö; Sun X; Sun S
    Nanoscale; 2013 Feb; 5(3):910-2. PubMed ID: 23254519
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of formic acid as reducing agent for application in catalytic reduction of nitrate in water.
    Garron A; Epron F
    Water Res; 2005 Aug; 39(13):3073-81. PubMed ID: 15982701
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Catalytic transfer hydrogenation/hydrogenolysis for reductive upgrading of furfural and 5-(hydroxymethyl)furfural.
    Scholz D; Aellig C; Hermans I
    ChemSusChem; 2014 Jan; 7(1):268-75. PubMed ID: 24227625
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The size-controlled synthesis of Pd/C catalysts by different solvents for formic acid electrooxidation.
    Huang Y; Liao J; Liu C; Lu T; Xing W
    Nanotechnology; 2009 Mar; 20(10):105604. PubMed ID: 19417524
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficient production of hydrogen from formic acid using a covalent triazine framework supported molecular catalyst.
    Bavykina AV; Goesten MG; Kapteijn F; Makkee M; Gascon J
    ChemSusChem; 2015 Mar; 8(5):809-12. PubMed ID: 25677344
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Natural DNA-modified graphene/Pd nanoparticles as highly active catalyst for formic acid electro-oxidation and for the Suzuki reaction.
    Qu K; Wu L; Ren J; Qu X
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):5001-9. PubMed ID: 22973944
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Production of high-octane gasoline via hydrodeoxygenation of sorbitol over palladium-based bimetallic catalysts.
    Kwon EE; Kim YT; Kim HJ; Andrew Lin KY; Kim KH; Lee J; Huber GW
    J Environ Manage; 2018 Dec; 227():329-334. PubMed ID: 30199729
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selective Hydrodeoxygenation of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran over Ni Supported on Zirconium Phosphate Catalysts.
    Zhu C; Liu Q; Li D; Wang H; Zhang C; Cui C; Chen L; Cai C; Ma L
    ACS Omega; 2018 Jul; 3(7):7407-7417. PubMed ID: 31458900
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fructose dehydration to 5-hydroxymethylfurfural over solid acid catalysts in a biphasic system.
    Ordomsky VV; van der Schaaf J; Schouten JC; Nijhuis TA
    ChemSusChem; 2012 Sep; 5(9):1812-9. PubMed ID: 22777706
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Catalytic Upgrading of 5-Hydroxymethylfurfural to Drop-in Biofuels by Solid Base and Bifunctional Metal-Acid Catalysts.
    Bohre A; Saha B; Abu-Omar MM
    ChemSusChem; 2015 Dec; 8(23):4022-9. PubMed ID: 26549016
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly efficient hydrogen storage system based on ammonium bicarbonate/formate redox equilibrium over palladium nanocatalysts.
    Su J; Yang L; Lu M; Lin H
    ChemSusChem; 2015 Mar; 8(5):813-6. PubMed ID: 25663262
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Controlled synthesis of nanosized palladium icosahedra and their catalytic activity towards formic-acid oxidation.
    Lv T; Wang Y; Choi SI; Chi M; Tao J; Pan L; Huang CZ; Zhu Y; Xia Y
    ChemSusChem; 2013 Oct; 6(10):1923-30. PubMed ID: 24106017
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A facile approach to β-amino acid derivatives via palladium-catalyzed hydrocarboxylation of enimides with formic acid.
    Dai J; Ren W; Wang H; Shi Y
    Org Biomol Chem; 2015 Aug; 13(31):8429-32. PubMed ID: 26186060
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Formic acid-assisted synthesis of palladium nanocrystals and their electrocatalytic properties.
    Wang Q; Wang Y; Guo P; Li Q; Ding R; Wang B; Li H; Liu J; Zhao XS
    Langmuir; 2014 Jan; 30(1):440-6. PubMed ID: 24369065
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pd/NbOPO₄ multifunctional catalyst for the direct production of liquid alkanes from aldol adducts of furans.
    Xia QN; Cuan Q; Liu XH; Gong XQ; Lu GZ; Wang YQ
    Angew Chem Int Ed Engl; 2014 Sep; 53(37):9755-60. PubMed ID: 25045056
    [TBL] [Abstract][Full Text] [Related]  

  • 39. One-pot Reductive Amination of carbonyl Compounds with Nitro Compounds by Transfer Hydrogenation over Co-N
    Zhou P; Zhang Z
    ChemSusChem; 2017 May; 10(9):1892-1897. PubMed ID: 28345301
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient Hydrogen Storage and Production Using a Catalyst with an Imidazoline-Based, Proton-Responsive Ligand.
    Wang L; Onishi N; Murata K; Hirose T; Muckerman JT; Fujita E; Himeda Y
    ChemSusChem; 2017 Mar; 10(6):1071-1075. PubMed ID: 27860395
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.