BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 24259317)

  • 1. Heterogeneous tempo and mode of conserved noncoding sequence evolution among four mammalian orders.
    Babarinde IA; Saitou N
    Genome Biol Evol; 2013; 5(12):2330-43. PubMed ID: 24259317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic Locations of Conserved Noncoding Sequences and Their Proximal Protein-Coding Genes in Mammalian Expression Dynamics.
    Babarinde IA; Saitou N
    Mol Biol Evol; 2016 Jul; 33(7):1807-17. PubMed ID: 27017584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of conserved non-coding sequences within the vertebrate Hox clusters through the two-round whole genome duplications revealed by phylogenetic footprinting analysis.
    Matsunami M; Sumiyama K; Saitou N
    J Mol Evol; 2010 Dec; 71(5-6):427-36. PubMed ID: 20981416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular phylogeny of Rodentia, Lagomorpha, Primates, Artiodactyla, and Carnivora and molecular clocks.
    Li WH; Gouy M; Sharp PM; O'hUigin C; Yang YW
    Proc Natl Acad Sci U S A; 1990 Sep; 87(17):6703-7. PubMed ID: 2395871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization and phylogenetic utility of the mammalian protamine p1 gene.
    Van Den Bussche RA; Hoofer SR; Hansen EW
    Mol Phylogenet Evol; 2002 Mar; 22(3):333-41. PubMed ID: 11884158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phylogenetic analysis of genome rearrangements among five mammalian orders.
    Luo H; Arndt W; Zhang Y; Shi G; Alekseyev MA; Tang J; Hughes AL; Friedman R
    Mol Phylogenet Evol; 2012 Dec; 65(3):871-82. PubMed ID: 22929217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of weakly conserved ancestral mammalian regulatory sequences by primate comparisons.
    Wang QF; Prabhakar S; Chanan S; Cheng JF; Rubin EM; Boffelli D
    Genome Biol; 2007; 8(1):R1. PubMed ID: 17201929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model dependence of the phylogenetic inference: relationship among carnivores, Perissodactyls and cetartiodactyls as inferred from mitochondrial genome sequences.
    Cao Y; Kim KS; Ha JH; Hasegawa M
    Genes Genet Syst; 1999 Oct; 74(5):211-7. PubMed ID: 10734603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utility and distribution of conserved noncoding sequences in the grasses.
    Kaplinsky NJ; Braun DM; Penterman J; Goff SA; Freeling M
    Proc Natl Acad Sci U S A; 2002 Apr; 99(9):6147-51. PubMed ID: 11972021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GC Content Heterogeneity Transition of Conserved Noncoding Sequences Occurred at the Emergence of Vertebrates.
    Hettiarachchi N; Saitou N
    Genome Biol Evol; 2016 Dec; 8(11):3377-3392. PubMed ID: 28040773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A covarion-based method for detecting molecular adaptation: application to the evolution of primate mitochondrial genomes.
    Pupko T; Galtier N
    Proc Biol Sci; 2002 Jul; 269(1498):1313-6. PubMed ID: 12079652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary affinities of the order Perissodactyla and the phylogenetic status of the superordinal taxa Ungulata and Altungulata.
    Graur D; Gouy M; Duret L
    Mol Phylogenet Evol; 1997 Apr; 7(2):195-200. PubMed ID: 9126561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Support for interordinal eutherian relationships with an emphasis on primates and their archontan relatives.
    Allard MW; McNiff BE; Miyamoto MM
    Mol Phylogenet Evol; 1996 Feb; 5(1):78-88. PubMed ID: 8673299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Episodic molecular evolution of pituitary growth hormone in Cetartiodactyla.
    Maniou Z; Wallis OC; Wallis M
    J Mol Evol; 2004 Jun; 58(6):743-53. PubMed ID: 15461431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogenetic relationships among eutherian orders estimated from inferred sequences of mitochondrial proteins: instability of a tree based on a single gene.
    Cao Y; Adachi J; Janke A; Pääbo S; Hasegawa M
    J Mol Evol; 1994 Nov; 39(5):519-27. PubMed ID: 7807540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Positive and negative selection in murine ultraconserved noncoding elements.
    Halligan DL; Oliver F; Guthrie J; Stemshorn KC; Harr B; Keightley PD
    Mol Biol Evol; 2011 Sep; 28(9):2651-60. PubMed ID: 21478460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purifying selection maintains highly conserved noncoding sequences in Drosophila.
    Casillas S; Barbadilla A; Bergman CM
    Mol Biol Evol; 2007 Oct; 24(10):2222-34. PubMed ID: 17646256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noncoding sequences conserved in a limited number of mammals in the SIM2 interval are frequently functional.
    Frazer KA; Tao H; Osoegawa K; de Jong PJ; Chen X; Doherty MF; Cox DR
    Genome Res; 2004 Mar; 14(3):367-72. PubMed ID: 14962988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vanishing GC-rich isochores in mammalian genomes.
    Duret L; Semon M; Piganeau G; Mouchiroud D; Galtier N
    Genetics; 2002 Dec; 162(4):1837-47. PubMed ID: 12524353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lineage-specific conserved noncoding sequences of plant genomes: their possible role in nucleosome positioning.
    Hettiarachchi N; Kryukov K; Sumiyama K; Saitou N
    Genome Biol Evol; 2014 Sep; 6(9):2527-42. PubMed ID: 25364802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.