These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 24259924)

  • 21. Running wheel exercise enhances recovery from nigrostriatal dopamine injury without inducing neuroprotection.
    O'Dell SJ; Gross NB; Fricks AN; Casiano BD; Nguyen TB; Marshall JF
    Neuroscience; 2007 Feb; 144(3):1141-51. PubMed ID: 17157992
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Delayed exercise-induced functional and neurochemical partial restoration following MPTP.
    Archer T; Fredriksson A
    Neurotox Res; 2012 Feb; 21(2):210-21. PubMed ID: 21830164
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exercise Rehabilitation Attenuates Cognitive Deficits in Rats with Traumatic Brain Injury by Stimulating the Cerebral HSP20/BDNF/TrkB Signalling Axis.
    Chou W; Liu YF; Lin CH; Lin MT; Chen CC; Liu WP; Chang CP; Chio CC
    Mol Neurobiol; 2018 Nov; 55(11):8602-8611. PubMed ID: 29574629
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Voluntary Exercise Preconditioning Activates Multiple Antiapoptotic Mechanisms and Improves Neurological Recovery after Experimental Traumatic Brain Injury.
    Zhao Z; Sabirzhanov B; Wu J; Faden AI; Stoica BA
    J Neurotrauma; 2015 Sep; 32(17):1347-60. PubMed ID: 25419789
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 7,8-Dihydroxyflavone facilitates the action exercise to restore plasticity and functionality: Implications for early brain trauma recovery.
    Krishna G; Agrawal R; Zhuang Y; Ying Z; Paydar A; Harris NG; Royes LFF; Gomez-Pinilla F
    Biochim Biophys Acta Mol Basis Dis; 2017 Jun; 1863(6):1204-1213. PubMed ID: 28315455
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chronic Sciatic Neuropathy in Rat Reduces Voluntary Wheel-Running Activity With Concurrent Chronic Mechanical Allodynia.
    Whitehead RA; Lam NL; Sun MS; Sanchez J; Noor S; Vanderwall AG; Petersen TR; Martin HB; Milligan ED
    Anesth Analg; 2017 Jan; 124(1):346-355. PubMed ID: 27782944
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential effects of voluntary and forced exercise on stress responses after traumatic brain injury.
    Griesbach GS; Tio DL; Vincelli J; McArthur DL; Taylor AN
    J Neurotrauma; 2012 May; 29(7):1426-33. PubMed ID: 22233388
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The benefits of voluntary physical exercise after traumatic brain injury on rat's object recognition memory: A comparison of different temporal schedules.
    Amorós-Aguilar L; Portell-Cortés I; Costa-Miserachs D; Torras-Garcia M; Riubugent-Camps È; Almolda B; Coll-Andreu M
    Exp Neurol; 2020 Apr; 326():113178. PubMed ID: 31926165
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contralateral peripheral neurotization for a hemiplegic hindlimb after central neurological injury.
    Zheng MX; Hua XY; Jiang S; Qiu YQ; Shen YD; Xu WD
    J Neurosurg; 2018 Jan; 128(1):304-311. PubMed ID: 28338437
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exercise preconditioning provides long-term protection against early chronic doxorubicin cardiotoxicity.
    Hydock DS; Lien CY; Jensen BT; Schneider CM; Hayward R
    Integr Cancer Ther; 2011 Mar; 10(1):47-57. PubMed ID: 21382960
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of lacosamide on structural damage and functional recovery after traumatic brain injury in rats.
    Pitkänen A; Immonen R; Ndode-Ekane X; Gröhn O; Stöhr T; Nissinen J
    Epilepsy Res; 2014 May; 108(4):653-65. PubMed ID: 24636248
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Post-traumatic administration of the p53 inactivator pifithrin-α oxygen analogue reduces hippocampal neuronal loss and improves cognitive deficits after experimental traumatic brain injury.
    Yang LY; Greig NH; Huang YN; Hsieh TH; Tweedie D; Yu QS; Hoffer BJ; Luo Y; Kao YC; Wang JY
    Neurobiol Dis; 2016 Dec; 96():216-226. PubMed ID: 27553877
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Voluntary Wheel Running Reverses the Decrease in Subventricular Zone Neurogenesis Caused by Corticosterone.
    Lee JC; Yau SY; Lee TMC; Lau BW; So KF
    Cell Transplant; 2016 Nov; 25(11):1979-1986. PubMed ID: 27393316
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wheel-running modestly promotes functional recovery after a unilateral cortical lesion in rats.
    Zhao X; Aronowski J; Liu SJ; Schallert T; Zhang J; Strong R; Ou ZS; Nguyen T; Grotta JC
    Behav Neurol; 2005; 16(1):41-9. PubMed ID: 16082079
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Individualized Running Wheel System with a Dynamically Adjustable Exercise Area and Speed for Rats Following Ischemic Stroke.
    Wang YL; Cheng JC; Chang CP; Su FC; Chen CC
    Med Sci Monit; 2020 Sep; 26():e924411. PubMed ID: 32886655
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Time window for voluntary exercise-induced increases in hippocampal neuroplasticity molecules after traumatic brain injury is severity dependent.
    Griesbach GS; Gómez-Pinilla F; Hovda DA
    J Neurotrauma; 2007 Jul; 24(7):1161-71. PubMed ID: 17610355
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of Voluntary Wheel Running on Striatal Dopamine Level and Neurocognitive Behaviors after Molar Loss in Rats.
    Zhang L; Feng Y; Ji W; Liu J; Liu K
    Behav Neurol; 2017; 2017():6137071. PubMed ID: 29358845
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Short-Term Effects of Isolated Traumatic Brain Injury on the Heart in Experimental Healthy Rats.
    Lee YL; Lim SW; Zheng HX; Chang WT; Nyam TE; Chio CC; Kuo JR; Wang CC
    Neurocrit Care; 2020 Oct; 33(2):438-448. PubMed ID: 31907801
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of voluntary exercise exposure on histological and neurobehavioral outcomes after ischemic brain injury in the rat.
    Marin R; Williams A; Hale S; Burge B; Mense M; Bauman R; Tortella F
    Physiol Behav; 2003 Nov; 80(2-3):167-75. PubMed ID: 14637213
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Omega-3 Fatty Acids and Vitamin D Decrease Plasma T-Tau, GFAP, and UCH-L1 in Experimental Traumatic Brain Injury.
    Scrimgeour AG; Condlin ML; Loban A; DeMar JC
    Front Nutr; 2021; 8():685220. PubMed ID: 34150829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.