These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 24260105)

  • 1. OMR-arena: automated measurement and stimulation system to determine mouse visual thresholds based on optomotor responses.
    Kretschmer F; Kretschmer V; Kunze VP; Kretzberg J
    PLoS One; 2013; 8(11):e78058. PubMed ID: 24260105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A system to measure the Optokinetic and Optomotor response in mice.
    Kretschmer F; Sajgo S; Kretschmer V; Badea TC
    J Neurosci Methods; 2015 Dec; 256():91-105. PubMed ID: 26279344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of optomotor and optokinetic reflexes in mice.
    Kretschmer F; Tariq M; Chatila W; Wu B; Badea TC
    J Neurophysiol; 2017 Jul; 118(1):300-316. PubMed ID: 28424291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel rat head gaze determination system based on optomotor responses.
    You M; Yamane T; Tomita H; Sugano E; Akashi T
    PLoS One; 2017; 12(4):e0176633. PubMed ID: 28445553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterizing visual performance in mice: an objective and automated system based on the optokinetic reflex.
    Benkner B; Mutter M; Ecke G; Münch TA
    Behav Neurosci; 2013 Oct; 127(5):788-96. PubMed ID: 23957722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of Optomotor Response-based Visual Function Assessment in Mice.
    Shi C; Yuan X; Chang K; Cho KS; Xie XS; Chen DF; Luo G
    Sci Rep; 2018 Jun; 8(1):9708. PubMed ID: 29946119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial transformations between superior colliculus visual and motor response fields during head-unrestrained gaze shifts.
    Sadeh M; Sajad A; Wang H; Yan X; Crawford JD
    Eur J Neurosci; 2015 Dec; 42(11):2934-51. PubMed ID: 26448341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring and tracking eye movements of a behaving archer fish by real-time stereo vision.
    Ben-Simon A; Ben-Shahar O; Segev R
    J Neurosci Methods; 2009 Nov; 184(2):235-43. PubMed ID: 19698749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cognitive difficulty of a peripherally presented visual task affects head movements during gaze displacement.
    Dunham DN
    Int J Psychophysiol; 1997 Dec; 27(3):171-82. PubMed ID: 9451577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of optokinetic tracking software for objective evaluation of visual function in rodents.
    Segura F; Arines J; Sánchez-Cano A; Perdices L; Orduna-Hospital E; Fuentes-Broto L; Pinilla I
    Sci Rep; 2018 Jul; 8(1):10009. PubMed ID: 29968791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Responses of cerebellar Purkinje cells during fictive optomotor behavior in larval zebrafish.
    Scalise K; Shimizu T; Hibi M; Sawtell NB
    J Neurophysiol; 2016 Nov; 116(5):2067-2080. PubMed ID: 27512018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional coupling of the stabilizing eye and head reflexes during horizontal and vertical linear motion in the cat.
    Borel L; Lacour M
    Exp Brain Res; 1992; 91(2):191-206. PubMed ID: 1459223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transformation of the Visual Afterimage Under Subject's Eye and Body Movements and the Visual Field Constancy Mechanisms.
    Zenkin GM; Petrov AP
    Perception; 2015; 44(8-9):973-85. PubMed ID: 26562912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gaze shift during optokinetic stimulation in head free cats.
    Schweigart G
    Neurosci Lett; 1995 Jan; 183(1-2):124-6. PubMed ID: 7746470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic measurement of mouse visual acuity based on optomotor response: SKY optomotry.
    Ahn SY; Jung EH; Ahn H; Lee JS; Bak JH; Kim ED; Song JH; Shin HS; Jamiyansharav M; Seo KY
    Lab Anim; 2023 Aug; 57(4):412-423. PubMed ID: 36708198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Independent visual threshold measurements in the two eyes of freely moving rats and mice using a virtual-reality optokinetic system.
    Douglas RM; Alam NM; Silver BD; McGill TJ; Tschetter WW; Prusky GT
    Vis Neurosci; 2005; 22(5):677-84. PubMed ID: 16332278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relations between Eye Movement, Postural Sway and Cognitive Involvement in Unprecise and Precise Visual Tasks.
    Bonnet CT; Davin T; Hoang JY; Baudry S
    Neuroscience; 2019 Sep; 416():177-189. PubMed ID: 31356899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual influence on the slow oscillatory eye movement discovered during a visual fixation task.
    Zhang B; Pansell T; Ygge J; Bolzani R
    Vision Res; 2011 Oct; 51(19):2139-44. PubMed ID: 21871476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. VisualEyes: a modular software system for oculomotor experimentation.
    Guo Y; Kim EH; Alvarez TL
    J Vis Exp; 2011 Mar; (49):. PubMed ID: 21490568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual-vestibular interaction in the control of head and eye movement: the role of visual feedback and predictive mechanisms.
    Barnes GR
    Prog Neurobiol; 1993 Oct; 41(4):435-72. PubMed ID: 8210413
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.