These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 24260165)

  • 1. Differences in grain ultrastructure, phytochemical and proteomic profiles between the two contrasting grain Cd-accumulation barley genotypes.
    Sun H; Cao F; Wang N; Zhang M; Mosaddek Ahmed I; Zhang G; Wu F
    PLoS One; 2013; 8(11):e79158. PubMed ID: 24260165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genotypic differences in cadmium transport in developing barley grains.
    Lin L; Chen F; Cai Y; Chen ZH; Cao F
    Environ Sci Pollut Res Int; 2017 Mar; 24(8):7009-7015. PubMed ID: 28092001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA microarray revealed and RNAi plants confirmed key genes conferring low Cd accumulation in barley grains.
    Sun H; Chen ZH; Chen F; Xie L; Zhang G; Vincze E; Wu F
    BMC Plant Biol; 2015 Oct; 15():259. PubMed ID: 26503017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analyses of albumin/globulin grain proteome fraction in differentially salt-tolerant Tunisian barley landraces reveals genotype-specific and defined abundant proteins.
    Riahi J; Amri B; Chibani F; Azri W; Mejri S; Bennani L; Zoghlami N; Matros A; Mock HP; Ghorbel A; Jardak R
    Plant Biol (Stuttg); 2019 Jul; 21(4):652-661. PubMed ID: 30672087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative Proteome Profiling Provides Insight into the Proteins Associated with β-Glucan Accumulation in Hull-less Barley Grains.
    Zhang G; Zhang G; Zeng X; Xu Q; Wang Y; Yuan H; Zhang Y; Nyima T
    J Agric Food Chem; 2021 Jan; 69(1):568-583. PubMed ID: 33371680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutation of the d-hordein gene by RNA-guided Cas9 targeted editing reducing the grain size and changing grain compositions in barley.
    Yang Q; Zhong X; Li Q; Lan J; Tang H; Qi P; Ma J; Wang J; Chen G; Pu Z; Li W; Lan X; Deng M; Harwood W; Li Z; Wei Y; Zheng Y; Jiang Q
    Food Chem; 2020 May; 311():125892. PubMed ID: 31791724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential changes in grain ultrastructure, amylase, protein and amino acid profiles between Tibetan wild and cultivated barleys under drought and salinity alone and combined stress.
    Ahmed IM; Cao F; Han Y; Nadira UA; Zhang G; Wu F
    Food Chem; 2013 Dec; 141(3):2743-50. PubMed ID: 23871019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic comparison of near-isogenic barley (Hordeum vulgare L.) germplasm differing in the allelic state of a major senescence QTL identifies numerous proteins involved in plant pathogen defense.
    Mason KE; Hilmer JK; Maaty WS; Reeves BD; Grieco PA; Bothner B; Fischer AM
    Plant Physiol Biochem; 2016 Dec; 109():114-127. PubMed ID: 27665045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shotgun proteomics of the barley seed proteome.
    Mahalingam R
    BMC Genomics; 2017 Jan; 18(1):44. PubMed ID: 28061743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteome analysis of Fusarium head blight in grains of naked barley (Hordeum vulgare subsp. nudum).
    Eggert K; Pawelzik E
    Proteomics; 2011 Mar; 11(5):972-85. PubMed ID: 21271677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatially resolved analysis of variation in barley (Hordeum vulgare) grain micronutrient accumulation.
    Detterbeck A; Pongrac P; Rensch S; Reuscher S; Pečovnik M; Vavpetič P; Pelicon P; Holzheu S; Krämer U; Clemens S
    New Phytol; 2016 Sep; 211(4):1241-54. PubMed ID: 27125321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genotypic-dependent effects of N fertilizer, glutathione, silicon, zinc, and selenium on proteomic profiles, amino acid contents, and quality of rice genotypes with contrasting grain Cd accumulation.
    Cao F; Fu M; Wang R; Cheng W; Zhang G; Wu F
    Funct Integr Genomics; 2017 Jul; 17(4):387-397. PubMed ID: 27999965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Proteomic Analysis of Two Barley Cultivars (Hordeum vulgare L.) with Contrasting Grain Protein Content.
    Guo B; Luan H; Lin S; Lv C; Zhang X; Xu R
    Front Plant Sci; 2016; 7():542. PubMed ID: 27200019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide association mapping of cadmium accumulation in different organs of barley.
    Wu D; Sato K; Ma JF
    New Phytol; 2015 Nov; 208(3):817-29. PubMed ID: 26061418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of Barley (Hordeum vulgare L.) Grain Protein Sink-Source Relations Towards Human Epidermal Growth Factor Instead of B-hordein Storage Protein.
    Panting M; Holme IB; Björnsson JM; Brinch-Pedersen H
    Mol Biotechnol; 2021 Jan; 63(1):13-23. PubMed ID: 33051823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Over-expression of (1,3;1,4)-β-D-glucanase isoenzyme EII gene results in decreased (1,3;1,4)-β-D-glucan content and increased starch level in barley grains.
    Han N; Na C; Chai Y; Chen J; Zhang Z; Bai B; Bian H; Zhang Y; Zhu M
    J Sci Food Agric; 2017 Jan; 97(1):122-127. PubMed ID: 26927391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strigolactone GR24 improves cadmium tolerance by regulating cadmium uptake, nitric oxide signaling and antioxidant metabolism in barley (Hordeum vulgare L.).
    Qiu CW; Zhang C; Wang NH; Mao W; Wu F
    Environ Pollut; 2021 Jan; 273():116486. PubMed ID: 33484996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic profiling of barley spent grains guides enzymatic solubilization of the remaining proteins.
    Bi X; Ye L; Lau A; Kok YJ; Zheng L; Ng D; Tan K; Ow D; Ananta E; Vafiadi C; Muller J
    Appl Microbiol Biotechnol; 2018 May; 102(9):4159-4170. PubMed ID: 29550991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Barley metallothioneins: MT3 and MT4 are localized in the grain aleurone layer and show differential zinc binding.
    Hegelund JN; Schiller M; Kichey T; Hansen TH; Pedas P; Husted S; Schjoerring JK
    Plant Physiol; 2012 Jul; 159(3):1125-37. PubMed ID: 22582132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteome Analysis of Hordein-Null Barley Lines Reveals Storage Protein Synthesis and Compensation Mechanisms.
    Bose U; Broadbent JA; Byrne K; Blundell MJ; Howitt CA; Colgrave ML
    J Agric Food Chem; 2020 May; 68(20):5763-5775. PubMed ID: 32374605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.