BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 24260175)

  • 1. Mesozooplankton grazing on picocyanobacteria in the Baltic Sea as inferred from molecular diet analysis.
    Motwani NH; Gorokhova E
    PLoS One; 2013; 8(11):e79230. PubMed ID: 24260175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA metabarcoding reveals trophic niche diversity of micro and mesozooplankton species.
    Novotny A; Zamora-Terol S; Winder M
    Proc Biol Sci; 2021 Jun; 288(1953):20210908. PubMed ID: 34130506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mercury-methylating bacteria are associated with copepods: A proof-of-principle survey in the Baltic Sea.
    Gorokhova E; Soerensen AL; Motwani NH
    PLoS One; 2020; 15(3):e0230310. PubMed ID: 32176728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seasonal changes in the abundance and biomass of copepods in the south-eastern Baltic Sea in 2010 and 2011.
    Dzierzbicka-Glowacka L; Lemieszek A; Kalarus M; Griniene E
    PeerJ; 2018; 6():e5562. PubMed ID: 30210945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copepod and microzooplankton grazing in mesocosms fertilised with different Si:N ratios: no overlap between food spectra and Si:N influence on zooplankton trophic level.
    Sommer U; Hansen T; Blum O; Holzner N; Vadstein O; Stibor H
    Oecologia; 2005 Jan; 142(2):274-83. PubMed ID: 15480805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple vs. single phytoplankton species alter stoichiometry of trophic interaction with zooplankton.
    Plum C; Hüsener M; Hillebrand H
    Ecology; 2015 Nov; 96(11):3075-89. PubMed ID: 27070025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Indicator Properties of Baltic Zooplankton for Classification of Environmental Status within Marine Strategy Framework Directive.
    Gorokhova E; Lehtiniemi M; Postel L; Rubene G; Amid C; Lesutiene J; Uusitalo L; Strake S; Demereckiene N
    PLoS One; 2016; 11(7):e0158326. PubMed ID: 27410261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stable isotopes show food web changes after invasion by the predatory cladoceran Cercopagis pengoi in a Baltic Sea bay.
    Gorokhova E; Hansson S; Höglander H; Andersen CM
    Oecologia; 2005 Mar; 143(2):251-9. PubMed ID: 15688211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antioxidant Responses in Copepods Are Driven Primarily by Food Intake, Not by Toxin-Producing Cyanobacteria in the Diet.
    Gorokhova E; El-Shehawy R
    Front Physiol; 2021; 12():805646. PubMed ID: 35058807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increasing picocyanobacteria success in shelf waters contributes to long-term food web degradation.
    Schmidt K; Birchill AJ; Atkinson A; Brewin RJW; Clark JR; Hickman AE; Johns DG; Lohan MC; Milne A; Pardo S; Polimene L; Smyth TJ; Tarran GA; Widdicombe CE; Woodward EMS; Ussher SJ
    Glob Chang Biol; 2020 Oct; 26(10):5574-5587. PubMed ID: 32506810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fitness consequences for copepods feeding on a red tide dinoflagellate: deciphering the effects of nutritional value, toxicity, and feeding behavior.
    Prince EK; Lettieri L; McCurdy KJ; Kubanek J
    Oecologia; 2006 Mar; 147(3):479-88. PubMed ID: 16261377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colorful microdiversity of Synechococcus strains (picocyanobacteria) isolated from the Baltic Sea.
    Haverkamp TH; Schouten D; Doeleman M; Wollenzien U; Huisman J; Stal LJ
    ISME J; 2009 Apr; 3(4):397-408. PubMed ID: 19052629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular and microscopic evidence of viruses in marine copepods.
    Dunlap DS; Ng TF; Rosario K; Barbosa JG; Greco AM; Breitbart M; Hewson I
    Proc Natl Acad Sci U S A; 2013 Jan; 110(4):1375-80. PubMed ID: 23297243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Climate Effects on High Latitude Daphnia via Food Quality and Thresholds.
    Przytulska A; Bartosiewicz M; Rautio M; Dufresne F; Vincent WF
    PLoS One; 2015; 10(5):e0126231. PubMed ID: 25970289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ingestion and transfer of microplastics in the planktonic food web.
    Setälä O; Fleming-Lehtinen V; Lehtiniemi M
    Environ Pollut; 2014 Feb; 185():77-83. PubMed ID: 24220023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diurnal Changes of Zooplankton Community Reduction Rate at Lake Outlets and Related Environmental Factors.
    Czerniawski R; Sługocki Ł; Kowalska-Góralska M
    PLoS One; 2016; 11(7):e0158837. PubMed ID: 27392017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct and indirect effects of elevated CO2 are revealed through shifts in phytoplankton, copepod development, and fatty acid accumulation.
    McLaskey AK; Keister JE; Schoo KL; Olson MB; Love BA
    PLoS One; 2019; 14(3):e0213931. PubMed ID: 30870509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ocean acidification effects on mesozooplankton community development: Results from a long-term mesocosm experiment.
    Algueró-Muñiz M; Alvarez-Fernandez S; Thor P; Bach LT; Esposito M; Horn HG; Ecker U; Langer JAF; Taucher J; Malzahn AM; Riebesell U; Boersma M
    PLoS One; 2017; 12(4):e0175851. PubMed ID: 28410436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trematode cercariae as prey for zooplankton: effect on fitness traits of predators.
    Mironova E; Gopko M; Pasternak A; Mikheev V; Taskinen J
    Parasitology; 2019 Jan; 146(1):105-111. PubMed ID: 29898802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bloom-forming cyanobacteria support copepod reproduction and development in the Baltic Sea.
    Hogfors H; Motwani NH; Hajdu S; El-Shehawy R; Holmborn T; Vehmaa A; Engström-Öst J; Brutemark A; Gorokhova E
    PLoS One; 2014; 9(11):e112692. PubMed ID: 25409500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.