These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 24260261)

  • 1. Probability weighted ensemble transfer learning for predicting interactions between HIV-1 and human proteins.
    Mei S
    PLoS One; 2013; 8(11):e79606. PubMed ID: 24260261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new sequence based encoding for prediction of host-pathogen protein interactions.
    Kösesoy İ; Gök M; Öz C
    Comput Biol Chem; 2019 Feb; 78():170-177. PubMed ID: 30553999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational reconstruction of proteome-wide protein interaction networks between HTLV retroviruses and Homo sapiens.
    Mei S; Zhu H
    BMC Bioinformatics; 2014 Jul; 15(1):245. PubMed ID: 25037487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AdaBoost based multi-instance transfer learning for predicting proteome-wide interactions between Salmonella and human proteins.
    Mei S; Zhu H
    PLoS One; 2014; 9(10):e110488. PubMed ID: 25330226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SVM ensemble based transfer learning for large-scale membrane proteins discrimination.
    Mei S
    J Theor Biol; 2014 Jan; 340():105-10. PubMed ID: 24050851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computationally predicting protein-RNA interactions using only positive and unlabeled examples.
    Cheng Z; Zhou S; Guan J
    J Bioinform Comput Biol; 2015 Jun; 13(3):1541005. PubMed ID: 25790785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting protein-protein interactions between human and hepatitis C virus via an ensemble learning method.
    Emamjomeh A; Goliaei B; Zahiri J; Ebrahimpour R
    Mol Biosyst; 2014 Dec; 10(12):3147-54. PubMed ID: 25230581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effectively Identifying Compound-Protein Interactions by Learning from Positive and Unlabeled Examples.
    Cheng Z; Zhou S; Wang Y; Liu H; Guan J; Chen YP
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(6):1832-1843. PubMed ID: 28113437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate prediction of protein-protein interactions by integrating potential evolutionary information embedded in PSSM profile and discriminative vector machine classifier.
    Li ZW; You ZH; Chen X; Li LP; Huang DS; Yan GY; Nie R; Huang YA
    Oncotarget; 2017 Apr; 8(14):23638-23649. PubMed ID: 28423569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene ontology based transfer learning for protein subcellular localization.
    Mei S; Fei W; Zhou S
    BMC Bioinformatics; 2011 Feb; 12():44. PubMed ID: 21284890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel biclustering approach to association rule mining for predicting HIV-1-human protein interactions.
    Mukhopadhyay A; Maulik U; Bandyopadhyay S
    PLoS One; 2012; 7(4):e32289. PubMed ID: 22539940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RVMAB: Using the Relevance Vector Machine Model Combined with Average Blocks to Predict the Interactions of Proteins from Protein Sequences.
    An JY; You ZH; Meng FR; Xu SJ; Wang Y
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27213337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-label multi-kernel transfer learning for human protein subcellular localization.
    Mei S
    PLoS One; 2012; 7(6):e37716. PubMed ID: 22719847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of Machine Learning Approaches for Protein-protein Interactions Prediction.
    Zhang M; Su Q; Lu Y; Zhao M; Niu B
    Med Chem; 2017; 13(6):506-514. PubMed ID: 28530547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel one-class SVM based negative data sampling method for reconstructing proteome-wide HTLV-human protein interaction networks.
    Mei S; Zhu H
    Sci Rep; 2015 Jan; 5():8034. PubMed ID: 25620466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A NMF based approach for integrating multiple data sources to predict HIV-1-human PPIs.
    Ray S; Bandyopadhyay S
    BMC Bioinformatics; 2016 Mar; 17():121. PubMed ID: 26956556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance of rotation forest ensemble classifier and feature extractor in predicting protein interactions using amino acid sequences.
    Bustamam A; Musti MIS; Hartomo S; Aprilia S; Tampubolon PP; Lestari D
    BMC Genomics; 2019 Dec; 20(Suppl 9):950. PubMed ID: 31874636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of protein-protein interactions from amino acid sequences with ensemble extreme learning machines and principal component analysis.
    You ZH; Lei YK; Zhu L; Xia J; Wang B
    BMC Bioinformatics; 2013; 14 Suppl 8(Suppl 8):S10. PubMed ID: 23815620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian inference for genomic data integration reduces misclassification rate in predicting protein-protein interactions.
    Xing C; Dunson DB
    PLoS Comput Biol; 2011 Jul; 7(7):e1002110. PubMed ID: 21829334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving protein-protein interactions prediction accuracy using protein evolutionary information and relevance vector machine model.
    An JY; Meng FR; You ZH; Chen X; Yan GY; Hu JP
    Protein Sci; 2016 Oct; 25(10):1825-33. PubMed ID: 27452983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.