These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 24260333)
1. Changes in clonal poplar leaf chemistry caused by stem galls alter herbivory and leaf litter decomposition. Künkler N; Brandl R; Brändle M PLoS One; 2013; 8(11):e79994. PubMed ID: 24260333 [TBL] [Abstract][Full Text] [Related]
2. Interactions of gall-formers and leaf-chewers on a tropical tree fern: evidence for non-repulsion and co-occurrence between insect guilds. de Farias RP; da Costa LEN; de Arruda ECP; de Oliveira AFM; Cornelissen T; Mehltreter K Plant Biol (Stuttg); 2021 Nov; 23(6):1037-1043. PubMed ID: 34516716 [TBL] [Abstract][Full Text] [Related]
3. Effects of genetic variability and habitat of Qualea parviflora (Vochysiaceae) on herbivory by free-feeding and gall-forming insects. Gonçalves-Alvim SJ; Collevatti RG; Fernandes GW Ann Bot; 2004 Aug; 94(2):259-68. PubMed ID: 15234928 [TBL] [Abstract][Full Text] [Related]
4. Phenotypic plasticity and similarity among gall morphotypes on a superhost, Baccharis reticularia (Asteraceae). Formiga AT; Silveira FA; Fernandes GW; Isaias RM Plant Biol (Stuttg); 2015 Mar; 17(2):512-21. PubMed ID: 25124804 [TBL] [Abstract][Full Text] [Related]
5. Elevated CO2 interacts with herbivory to alter chlorophyll fluorescence and leaf temperature in Betula papyrifera and Populus tremuloides. Nabity PD; Hillstrom ML; Lindroth RL; DeLucia EH Oecologia; 2012 Aug; 169(4):905-13. PubMed ID: 22358995 [TBL] [Abstract][Full Text] [Related]
6. Manipulation of food resources by a gall-forming aphid: the physiology of sink-source interactions. Larson KC; Whitham TG Oecologia; 1991 Sep; 88(1):15-21. PubMed ID: 28312726 [TBL] [Abstract][Full Text] [Related]
7. Leaf herbivory and decomposability in a Malaysian tropical rain forest. Kurokawa H; Nakashizuka T Ecology; 2008 Sep; 89(9):2645-56. PubMed ID: 18831185 [TBL] [Abstract][Full Text] [Related]
8. The gall wasp Leptocybe invasa (Hymenoptera: Eulophidae) stimulates different chemical and phytohormone responses in two Eucalyptus varieties that vary in susceptibility to galling. Li XQ; Liu YZ; Guo WF; Solanki MK; Yang ZD; Xiang Y; Ma ZC; Wen YG Tree Physiol; 2017 Sep; 37(9):1208-1217. PubMed ID: 28938058 [TBL] [Abstract][Full Text] [Related]
9. Shelters of leaf-tying herbivores decompose faster than leaves damaged by free-living insects: Implications for nutrient turnover in polluted habitats. Kozlov MV; Zverev V; Zvereva EL Sci Total Environ; 2016 Oct; 568():946-951. PubMed ID: 27288287 [TBL] [Abstract][Full Text] [Related]
10. The impact of two gall-forming arthropods on the photosynthetic rates of their hosts. Larson KC Oecologia; 1998 Jun; 115(1-2):161-166. PubMed ID: 28308447 [TBL] [Abstract][Full Text] [Related]
11. Herbivore-mediated material fluxes in a northern deciduous forest under elevated carbon dioxide and ozone concentrations. Meehan TD; Couture JJ; Bennett AE; Lindroth RL New Phytol; 2014 Oct; 204(2):397-407. PubMed ID: 25078062 [TBL] [Abstract][Full Text] [Related]
12. A genetic basis for the manipulation of sink-source relationships by the galling aphid Pemphigus batae. Compson ZG; Larson KC; Zinkgraf MS; Whitham TG Oecologia; 2011 Nov; 167(3):711-21. PubMed ID: 21667296 [TBL] [Abstract][Full Text] [Related]
13. Woody stem galls interact with foliage to affect community associations. Cooper WR; Rieske LK Environ Entomol; 2009 Apr; 38(2):417-24. PubMed ID: 19389291 [TBL] [Abstract][Full Text] [Related]
14. Reading the Leaves' Palm: Leaf Traits and Herbivory along the Microclimatic Gradient of Forest Layers. Stiegel S; Entling MH; Mantilla-Contreras J PLoS One; 2017; 12(1):e0169741. PubMed ID: 28099483 [TBL] [Abstract][Full Text] [Related]
15. Plant herbivory responses through changes in leaf quality have no effect on subsequent leaf-litter decomposition in a neotropical rain forest tree community. Cárdenas RE; Hättenschwiler S; Valencia R; Argoti A; Dangles O New Phytol; 2015 Aug; 207(3):817-29. PubMed ID: 25771942 [TBL] [Abstract][Full Text] [Related]
16. Structural and Chemical Profiles of Jorge NC; Souza-Silva ÉA; Alvarenga DR; Saboia G; Soares GLG; Zini CA; Cavalleri A; Isaias RMS Front Plant Sci; 2018; 9():1521. PubMed ID: 30459785 [TBL] [Abstract][Full Text] [Related]
17. Phytohormones related to host plant manipulation by a gall-inducing leafhopper. Tokuda M; Jikumaru Y; Matsukura K; Takebayashi Y; Kumashiro S; Matsumura M; Kamiya Y PLoS One; 2013; 8(4):e62350. PubMed ID: 23638047 [TBL] [Abstract][Full Text] [Related]
18. Forest diversity effects on insect herbivores: do leaf traits matter? Muiruri EW; Barantal S; Iason GR; Salminen JP; Perez-Fernandez E; Koricheva J New Phytol; 2019 Mar; 221(4):2250-2260. PubMed ID: 30347456 [TBL] [Abstract][Full Text] [Related]
19. A Physiological and Behavioral Mechanism for Leaf Herbivore-Induced Systemic Root Resistance. Erb M; Robert CA; Marti G; Lu J; Doyen GR; Villard N; Barrière Y; French BW; Wolfender JL; Turlings TC; Gershenzon J Plant Physiol; 2015 Dec; 169(4):2884-94. PubMed ID: 26430225 [TBL] [Abstract][Full Text] [Related]
20. Differential Impact of Herbivores from Three Feeding Guilds on Systemic Secondary Metabolite Induction, Phytohormone Levels and Plant-Mediated Herbivore Interactions. Eisenring M; Glauser G; Meissle M; Romeis J J Chem Ecol; 2018 Dec; 44(12):1178-1189. PubMed ID: 30267359 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]