BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 24260335)

  • 1. Osteochondral tissue engineering in vivo: a comparative study using layered silk fibroin scaffolds from mulberry and nonmulberry silkworms.
    Saha S; Kundu B; Kirkham J; Wood D; Kundu SC; Yang XB
    PLoS One; 2013; 8(11):e80004. PubMed ID: 24260335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonmulberry Silk Fibroin Scaffold Shows Superior Osteoconductivity Than Mulberry Silk Fibroin in Calvarial Bone Regeneration.
    Sahu N; Baligar P; Midha S; Kundu B; Bhattacharjee M; Mukherjee S; Mukherjee S; Maushart F; Das S; Loparic M; Kundu SC; Ghosh S; Mukhopadhyay A
    Adv Healthc Mater; 2015 Aug; 4(11):1709-21. PubMed ID: 26084249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends.
    Bhardwaj N; Kundu SC
    Biomaterials; 2012 Apr; 33(10):2848-57. PubMed ID: 22261099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential of Agarose/Silk Fibroin Blended Hydrogel for in Vitro Cartilage Tissue Engineering.
    Singh YP; Bhardwaj N; Mandal BB
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21236-49. PubMed ID: 27459679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silk fiber reinforcement modulates in vitro chondrogenesis in 3D composite scaffolds.
    Singh YP; Adhikary M; Bhardwaj N; Bhunia BK; Mandal BB
    Biomed Mater; 2017 Jul; 12(4):045012. PubMed ID: 28737162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the in vitro and in vivo degradations of silk fibroin scaffolds from mulberry and nonmulberry silkworms.
    You R; Xu Y; Liu Y; Li X; Li M
    Biomed Mater; 2014 Dec; 10(1):015003. PubMed ID: 25532470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-mulberry silk gland fibroin protein 3-D scaffold for enhanced differentiation of human mesenchymal stem cells into osteocytes.
    Mandal BB; Kundu SC
    Acta Biomater; 2009 Sep; 5(7):2579-90. PubMed ID: 19345621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteogenic and adipogenic differentiation of rat bone marrow cells on non-mulberry and mulberry silk gland fibroin 3D scaffolds.
    Mandal BB; Kundu SC
    Biomaterials; 2009 Oct; 30(28):5019-30. PubMed ID: 19577292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mimicking Hierarchical Complexity of the Osteochondral Interface Using Electrospun Silk-Bioactive Glass Composites.
    M JC; Reardon PJ; Konwarh R; Knowles JC; Mandal BB
    ACS Appl Mater Interfaces; 2017 Mar; 9(9):8000-8013. PubMed ID: 28181432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The synergistic effects of 3-D porous silk fibroin matrix scaffold properties and hydrodynamic environment in cartilage tissue regeneration.
    Wang Y; Bella E; Lee CS; Migliaresi C; Pelcastre L; Schwartz Z; Boyan BD; Motta A
    Biomaterials; 2010 Jun; 31(17):4672-81. PubMed ID: 20303584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-mulberry silk fibroin grafted poly (Є-caprolactone)/nano hydroxyapatite nanofibrous scaffold for dual growth factor delivery to promote bone regeneration.
    Bhattacharjee P; Naskar D; Maiti TK; Bhattacharya D; Kundu SC
    J Colloid Interface Sci; 2016 Jun; 472():16-33. PubMed ID: 26998786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone tissue engineering with premineralized silk scaffolds.
    Kim HJ; Kim UJ; Kim HS; Li C; Wada M; Leisk GG; Kaplan DL
    Bone; 2008 Jun; 42(6):1226-34. PubMed ID: 18387349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential of inherent RGD containing silk fibroin-poly (Є-caprolactone) nanofibrous matrix for bone tissue engineering.
    Bhattacharjee P; Kundu B; Naskar D; Kim HW; Bhattacharya D; Maiti TK; Kundu SC
    Cell Tissue Res; 2016 Feb; 363(2):525-40. PubMed ID: 26174955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrospun silk-BMP-2 scaffolds for bone tissue engineering.
    Li C; Vepari C; Jin HJ; Kim HJ; Kaplan DL
    Biomaterials; 2006 Jun; 27(16):3115-24. PubMed ID: 16458961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential of 3-D tissue constructs engineered from bovine chondrocytes/silk fibroin-chitosan for in vitro cartilage tissue engineering.
    Bhardwaj N; Nguyen QT; Chen AC; Kaplan DL; Sah RL; Kundu SC
    Biomaterials; 2011 Sep; 32(25):5773-81. PubMed ID: 21601277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of chondrogenic and osteogenic regulatory factors on composite constructs grown using human mesenchymal stem cells, silk scaffolds and bioreactors.
    Augst A; Marolt D; Freed LE; Vepari C; Meinel L; Farley M; Fajardo R; Patel N; Gray M; Kaplan DL; Vunjak-Novakovic G
    J R Soc Interface; 2008 Aug; 5(25):929-39. PubMed ID: 18230586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional hepatocyte clusters on bioactive blend silk matrices towards generating bioartificial liver constructs.
    Janani G; Nandi SK; Mandal BB
    Acta Biomater; 2018 Feb; 67():167-182. PubMed ID: 29223705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual growth factor loaded nonmulberry silk fibroin/carbon nanofiber composite 3D scaffolds for in vitro and in vivo bone regeneration.
    Naskar D; Ghosh AK; Mandal M; Das P; Nandi SK; Kundu SC
    Biomaterials; 2017 Aug; 136():67-85. PubMed ID: 28521202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of initial cell seeding density on 3D-engineered silk fibroin scaffolds for articular cartilage tissue engineering.
    Talukdar S; Nguyen QT; Chen AC; Sah RL; Kundu SC
    Biomaterials; 2011 Dec; 32(34):8927-37. PubMed ID: 21906805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Silk Fibroin and Peptide Amphiphile-Based Co-Culture Model for Osteochondral Tissue Engineering.
    Çakmak S; Çakmak AS; Kaplan DL; Gümüşderelioğlu M
    Macromol Biosci; 2016 Aug; 16(8):1212-26. PubMed ID: 27139244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.