These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 24260579)
21. Unexpected stasis in a changing world: Lake nutrient and chlorophyll trends since 1990. Oliver SK; Collins SM; Soranno PA; Wagner T; Stanley EH; Jones JR; Stow CA; Lottig NR Glob Chang Biol; 2017 Dec; 23(12):5455-5467. PubMed ID: 28834575 [TBL] [Abstract][Full Text] [Related]
22. Nutrient mass balance of a large riverine reservoir in the context of water residence time variability. Shafiei F Environ Sci Pollut Res Int; 2021 Aug; 28(29):39082-39100. PubMed ID: 33745024 [TBL] [Abstract][Full Text] [Related]
23. Parallelism of Nutrients and CO Yan X; Wu S; Xu J; Xu X; Wang G Bull Environ Contam Toxicol; 2020 Nov; 105(5):742-749. PubMed ID: 33000334 [TBL] [Abstract][Full Text] [Related]
24. Lake nutrient stoichiometry is less predictable than nutrient concentrations at regional and sub-continental scales. Collins SM; Oliver SK; Lapierre JF; Stanley EH; Jones JR; Wagner T; Soranno PA Ecol Appl; 2017 Jul; 27(5):1529-1540. PubMed ID: 28370707 [TBL] [Abstract][Full Text] [Related]
25. Limnochemistry and nutrient dynamics in Upper Lake, Bhopal, India. Upadhyay R; Pandey AK; Upadhyay SK; Bassin JK; Misra SM Environ Monit Assess; 2012 Nov; 184(11):7065-77. PubMed ID: 22203413 [TBL] [Abstract][Full Text] [Related]
26. Spatiotemporal dynamics of succession and growth limitation of phytoplankton for nutrients and light in a large shallow lake. Liu X; Chen L; Zhang G; Zhang J; Wu Y; Ju H Water Res; 2021 Apr; 194():116910. PubMed ID: 33601234 [TBL] [Abstract][Full Text] [Related]
27. Quantifying temporal and spatial variations in sediment, nitrogen and phosphorus transport in stream inflows to a large eutrophic lake. Abell JM; Hamilton DP; Rutherford JC Environ Sci Process Impacts; 2013 Jun; 15(6):1137-52. PubMed ID: 23652422 [TBL] [Abstract][Full Text] [Related]
28. Seasonal variations of nitrogen and phosphorus retention in an agricultural drainage river in East China. Chen D; Lu J; Wang H; Shen Y; Kimberley MO Environ Sci Pollut Res Int; 2010 Feb; 17(2):312-20. PubMed ID: 19795144 [TBL] [Abstract][Full Text] [Related]
29. Excess nutrient loads to Lake Taihu: Opportunities for nutrient reduction. Wang M; Strokal M; Burek P; Kroeze C; Ma L; Janssen ABG Sci Total Environ; 2019 May; 664():865-873. PubMed ID: 30769310 [TBL] [Abstract][Full Text] [Related]
30. [Pollution characteristics and evaluation of nitrogen, phosphorus and organic matter in surface sediments of Lake Changshouhu in Chongqing, China]. Lu SY; Xu MS; Jin XC; Huang GZ; Hu W Huan Jing Ke Xue; 2012 Feb; 33(2):393-8. PubMed ID: 22509572 [TBL] [Abstract][Full Text] [Related]
31. Historical accumulation of N and P and sources of organic matter and N in sediment in an agricultural reservoir in Northern China. Ni Z; Wang S; Chu Z; Jin X Environ Sci Pollut Res Int; 2015 Jul; 22(13):9951-64. PubMed ID: 25663341 [TBL] [Abstract][Full Text] [Related]
32. Exploring watershed effects on nutrient concentrations in shallow lakes through stable isotope analysis. Langer TA; Zimmer KD; Herwig BR; Hobbs WO; Cotner JB Sci Total Environ; 2022 Jun; 823():153742. PubMed ID: 35149058 [TBL] [Abstract][Full Text] [Related]
33. A Bayesian modeling approach for phosphorus load apportionment in a reservoir with high water transfer disturbance. Liu X; Wang Y; Feng J; Chu C; Qiu Y; Xu Z; Li Z; Wang Y Environ Sci Pollut Res Int; 2018 Nov; 25(32):32395-32408. PubMed ID: 30229496 [TBL] [Abstract][Full Text] [Related]
34. Evaluating the dynamics of groundwater, lakebed transport, nutrient inflow and algal blooms in Upper Klamath Lake, Oregon, USA. Essaid HI; Kuwabara JS; Corson-Dosch NT; Carter JL; Topping BR Sci Total Environ; 2021 Apr; 765():142768. PubMed ID: 33097260 [TBL] [Abstract][Full Text] [Related]
35. Retention of nitrogen and phosphorus in Lake Chaohu, China: implications for eutrophication management. Wang Y; Kong X; Peng Z; Zhang H; Liu G; Hu W; Zhou X Environ Sci Pollut Res Int; 2020 Nov; 27(33):41488-41502. PubMed ID: 32686044 [TBL] [Abstract][Full Text] [Related]
36. Determining ecoregional numeric nutrient criteria by stressor-response models in Yungui ecoregion lakes, China. Huo S; Ma C; Xi B; Tong Z; He Z; Su J; Wu F Environ Sci Pollut Res Int; 2014; 21(14):8831-46. PubMed ID: 24696216 [TBL] [Abstract][Full Text] [Related]
37. Water and sediment quality, nutrient biochemistry and pollution loads in an urban freshwater lake: balancing human and ecological services. Waltham NJ; Reichelt-Brushett A; McCann D; Eyre BD Environ Sci Process Impacts; 2014 Dec; 16(12):2804-13. PubMed ID: 25384753 [TBL] [Abstract][Full Text] [Related]
38. [Strategies of nutrients control in lakes based on ecoregions of lakes in China]. Diao XJ; Xi BD; He LS; Deng XZ; Wu F; Wang PT Huan Jing Ke Xue; 2013 May; 34(5):1687-94. PubMed ID: 23914516 [TBL] [Abstract][Full Text] [Related]
39. Watershed land use effects on lake water quality in Denmark. Nielsen A; Trolle D; Søndergaard M; Lauridsen TL; Bjerring R; Olesen JE; Jeppesen E Ecol Appl; 2012 Jun; 22(4):1187-200. PubMed ID: 22827127 [TBL] [Abstract][Full Text] [Related]
40. [Effects of Optimized Fish Farming on the Sediment Nutrients of Eastern Lake Taihu]. He XW; Chu Y; Zeng J; Zhao DY; Lu JM; Cao P; Wu QL Huan Jing Ke Xue; 2017 Nov; 38(11):4562-4569. PubMed ID: 29965399 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]