BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

2111 related articles for article (PubMed ID: 24261458)

  • 1. Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties.
    Samal AK; Polavarapu L; Rodal-Cedeira S; Liz-Marzán LM; Pérez-Juste J; Pastoriza-Santos I
    Langmuir; 2013 Dec; 29(48):15076-82. PubMed ID: 24261458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of dopamine concentration and surface coverage of Au shell on the optical properties of Au, Ag, and Ag(core)Au(shell) nanoparticles.
    Bu Y; Lee S
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3923-31. PubMed ID: 22833686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA-embedded Au/Ag core-shell nanoparticles.
    Lim DK; Kim IJ; Nam JM
    Chem Commun (Camb); 2008 Nov; (42):5312-4. PubMed ID: 18985194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Au and Au@Ag core-shell nanoparticles on the SERS of bridging organic molecules.
    Güzel R; Ustündağ Z; Ekşi H; Keskin S; Taner B; Durgun ZG; Turan AA; Solak AO
    J Colloid Interface Sci; 2010 Nov; 351(1):35-42. PubMed ID: 20701922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. "Elastic" property of mesoporous silica shell: for dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method.
    Lin M; Wang Y; Sun X; Wang W; Chen L
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7516-25. PubMed ID: 25815901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of Au@Ag core-shell nanoparticles using polyelectrolyte multilayers as nanoreactors.
    Zhang X; Wang H; Su Z
    Langmuir; 2012 Nov; 28(44):15705-12. PubMed ID: 23075212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functionalized Au@Ag-Au nanoparticles as an optical and SERS dual probe for lateral flow sensing.
    Bai T; Wang M; Cao M; Zhang J; Zhang K; Zhou P; Liu Z; Liu Y; Guo Z; Lu X
    Anal Bioanal Chem; 2018 Mar; 410(9):2291-2303. PubMed ID: 29445833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Focused-ion-beam-fabricated Au nanorods coupled with Ag nanoparticles used as surface-enhanced Raman scattering-active substrate for analyzing trace melamine constituents in solution.
    Sivashanmugan K; Liao JD; Liu BH; Yao CK
    Anal Chim Acta; 2013 Oct; 800():56-64. PubMed ID: 24120168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA-embedded Au-Ag core-shell nanoparticles assembled on silicon slides as a reliable SERS substrate.
    Zhang Z; Zhang S; Lin M
    Analyst; 2014 May; 139(9):2207-13. PubMed ID: 24627887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size-tunable Au@Ag nanoparticles for colorimetric and SERS dual-mode sensing of palmatine in traditional Chinese medicine.
    Gao Y; Hu Z; Wu J; Ning Z; Jian J; Zhao T; Liang X; Yang X; Yang Z; Zhao Q; Wang J; Wang Z; Dina NE; Gherman AMR; Jiang Z; Zhou H
    J Pharm Biomed Anal; 2019 Sep; 174():123-133. PubMed ID: 31163346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential SERS activity of gold and silver nanostructures enabled by adsorbed poly(vinylpyrrolidone).
    Pinkhasova P; Yang L; Zhang Y; Sukhishvili S; Du H
    Langmuir; 2012 Feb; 28(5):2529-35. PubMed ID: 22225536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the surface-enhanced Raman scattering properties of Au-Ag nanocages at two different excitation wavelengths.
    Rycenga M; Hou KK; Cobley CM; Schwartz AG; Camargo PH; Xia Y
    Phys Chem Chem Phys; 2009 Jul; 11(28):5903-8. PubMed ID: 19588011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aqueous phase synthesis of Au-Ag core-shell nanocrystals with tunable shapes and their optical and catalytic properties.
    Tsao YC; Rej S; Chiu CY; Huang MH
    J Am Chem Soc; 2014 Jan; 136(1):396-404. PubMed ID: 24341355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Meditating metal coenhanced fluorescence and SERS around gold nanoaggregates in nanosphere as bifunctional biosensor for multiple DNA targets.
    Liu Y; Wu P
    ACS Appl Mater Interfaces; 2013 Jun; 5(12):5832-44. PubMed ID: 23734937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable synthesis and acetylation of dendrimer-entrapped or dendrimer-stabilized gold-silver alloy nanoparticles.
    Liu H; Shen M; Zhao J; Guo R; Cao X; Zhang G; Shi X
    Colloids Surf B Biointerfaces; 2012 Jun; 94():58-67. PubMed ID: 22326342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile synthesis of Au-Ag core-shell nanoparticles with uniform sub-2.5 nm interior nanogaps.
    Zhang Z; Zhang S; Lin M
    Chem Commun (Camb); 2013 Oct; 49(76):8519-21. PubMed ID: 23942864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid detection of multiple organophosphorus pesticides (triazophos and parathion-methyl) residues in peach by SERS based on core-shell bimetallic Au@Ag NPs.
    Yaseen T; Pu H; Sun DW
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2019 May; 36(5):762-778. PubMed ID: 30943113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled protein embedment onto Au/Ag core-shell nanoparticles for immuno-labeling of nanosilver surface.
    Lee IH; Lee JM; Jung Y
    ACS Appl Mater Interfaces; 2014 May; 6(10):7659-64. PubMed ID: 24801432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ag@Au core-shell nanoparticles synthesized by pulsed laser ablation in water: Effect of plasmon coupling and their SERS performance.
    Vinod M; Gopchandran KG
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 149():913-9. PubMed ID: 26004101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 106.